【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论有(填序号).
【答案】②③④
【解析】解:∵抛物线与x轴有两个交点, ∴b2﹣4ac>0,所以①错误;
∵顶点为D(﹣1,2),
∴抛物线的对称轴为直线x=﹣1,
∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,
∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,
∴当x=1时,y<0,
∴a+b+c<0,所以②正确;
∵抛物线的顶点为D(﹣1,2),
∴a﹣b+c=2,
∵抛物线的对称轴为直线x=﹣ =﹣1,
∴b=2a,
∴a﹣2a+c=2,即c﹣a=2,所以③正确;
∵当x=﹣1时,二次函数有最大值为2,
即只有x=﹣1时,ax2+bx+c=2,
∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.
所以答案是②③④.
【考点精析】关于本题考查的二次函数图象以及系数a、b、c的关系,需要了解二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AC=10,BC=16,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是⊙O外一点,PA和PB分别切⊙O于A、B两点,已知⊙O的半径为6cm,∠PAB=60°,若用图中阴影部分以扇形围成一个圆锥的侧面,则这个圆锥的高为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣6,0),B(﹣1,1),C(﹣3,3),将△ABC绕点B顺时针方向旋转90°后得到△A1BC1 .
(1)画出△A1BC1 , 写出点A1、C1的坐标;
(2)计算线段BA扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( )
A.2
B.8
C.2
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数y= 的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)点P是x轴上的一动点,试确定点P使PA+PB最小,并求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC= OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为( )
A.2
B.2.4
C.2.6
D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com