【题目】如图,在平行四边形中,,,…,是的等分点,连接并延长交于点,连接并延长交于点.
求证:;
设平行四边形的面积是,若,求的值.
【答案】(1)详见解析;(2)6.
【解析】
(1)根据对角线互相平分可以证明四边形AP2CP(n-2)是平行四边形,可得AE∥CP(n-2),根据平行线分线段成比例可得BE÷BC=DF÷CD,从而证明EF∥BD.
(2)根据同底不同高的三角形的面积相互间的关系可得S△ADF=1÷(n-2)S,S△ABE=1÷(n-2)S,即:S△CEF=[(n-4)÷(n-2)]2S,可得关于n的方程,解即可求得n的值.
证明:在平行四边形中,、是的等分点
所以:
连接、,根据对角线互相平分可以证明四边形是平行四边形
故:,则(
同理:所以:
故:
故:.
设平行四边形的面积为,则其余四边形部分的面积为
又:即:
同理:
又:,故
即:,即:
故:
故:
解得:.
科目:初中数学 来源: 题型:
【题目】某农场要建一个饲养场(矩形ABCD)两面靠现有墙(AD位置的墙最大可用长度为27米,AB位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.设饲养场(矩形ABCD)的一边AB长为x米.
(1)饲养场另一边BC=____米(用含x的代数式表示).
(2)若饲养场的面积为180平方米,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线L经过点A,BD⊥直线L,CE⊥直线L,垂足分别为点D、E.证明:DE=BD+CE.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图③,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC 中,∠A=90°,现要在 AC 边上确定一点 D,使点 D到 BA、BC 的距离相等.
(1)请你按照要求,在图上确定出点 D 的位置(尺规作图,不写作法,保留作图痕迹);
(2)若 BC=10,AB=8,则 AC= ,AD= (直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是用4个全等的直角三角形于1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示三角形的两条直角边(x>y),下列四个说法:①,②,③,④。其中说法正确的是( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=kx+b(k≠0)的图象经过点A(2,-6),且与反比例函数y=-的图象交于点B(a,4)
(1)求一次函数的解析式;
(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2= 的图象相交,求使y1<y2成立的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题。图1、图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点。
操作发现:小颖在图1中画出△ABC,其顶点A、B、C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE、EF分别经过点C、A,她借助此图求出了△ABC的面积。
(1)在图1中,小颖所画的△ABC的三边长分别是AB= ,BC= ,AC= ;△ABC的面积为 。
(2)请你根据小颖的思路,在图2中以格点为顶点画一个△DEF,使三角形三边长分别为2、、,并直接写出△DEF的面积= 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的有(____)
①DC′平分∠BDE;②BC长为;③△是等腰三角形;④△CED的周长等于BC的长.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形与中间的小正方形拼成的一个大正方形如果大正方形的面积是13,小正方形的面积是4,直角三角形的较短直角边为a,较长直角边为b,那么的值为______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com