精英家教网 > 初中数学 > 题目详情
如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式.
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.
(3)根据图象,写出函数值y为负数时,自变量x的取值范围.
(4)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向下平移______个单位.

【答案】分析:(1)利用待定系数法,将A(2,0)、B(0,-6)代入即可求出函数解析式;
(2)根据解析式,求出C点坐标、B点坐标,再利用三角形面积公式即可求出△ABC的面积;
(3)求出抛物线与x轴的交点坐标,即可得出x的取值范围;
(4)求出抛物线的顶点纵坐标,即可根据平移知识得出答案.
解答:解:(1)把A(2,0)、B(0,-6)代入
得:
解得
∴这个二次函数的解析式为

(2)∵该抛物线对称轴为直线
∴点C的坐标为(4,0),
∴AC=OC-OA=4-2=2,


(3)当y=0时,
解得,x1=2,x2=6,
由图可知,x<2或x>6.

(4)将(2)中所求x=4代入解析式,即可得顶点坐标为-×42+4×4-6=2,
可见把图象沿y轴向下平移2个单位,则该二次函数的图象与x轴只有一个交点.
故答案为:2.
点评:此题综合性较强,考查了抛物线与x轴的交点、用待定系数法求函数解析式、二次函数图象与几何变换等知识,解答时要理清思路,并注意计算的正确性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上精英家教网的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.
(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(-2,0)和点C(0,-8).
(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为
6
7
,0)
6
7
,0)

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•常德)如图,已知二次函数的图象过点A(0,-3),B(
3
3
),对称轴为直线x=-
1
2
,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象与x轴交于A(2,0)、B(6,0)两点,与y轴交于点D(0,4).
(1)求该二次函数的表达式;
(2)写出该抛物线的顶点C的坐标;
(3)求四边形ACBD的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象(0≤x≤3.4),关于该函数在所给自变量的取值范围内,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案