【题目】已知反比例函数y=(m为常数)的图象在一,三象限.
(1)求m的取值范围;
(2)如图,若该反比例函数的图象经过ABOD的顶点D,点A、B的坐标分别为(0,4),(﹣3,0).
①求出函数解析式;
②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为多少?
【答案】(1)m<;(2)①y=,②(4,3),(﹣3,﹣4),(﹣4,﹣3).
【解析】
(1)根据反比例函数的性质得1-2m>0,然后解不等式即可;
(2)①根据平行四边形的性质得AD∥OB,AD=OB,则可确定D(2,3),然后根据反比例函数图象上点的坐标特征求出k,从而得到解析式;
②利用反比例函数关于原点和直线y=x对称的性质去确定P点坐标.
(1)根据题意得1﹣2m>0,
解得m<;
(2)①∵四边形ABOD为平行四边形,
∴AD∥OB,AD=OB,
而点A,B的坐标分别为(0,4),(﹣3,0),
∴D(3,4);
把D(3,4)代入y=得k=4×3=12,
∴反比例函数解析式为y=,
②∵反比例函y=的图象关于原点对称,
而OD=OP时,
∴点D关于原点对称的点为P点,此时P(﹣3,﹣4),
∵反比例函y=的图象关于直线y=x对称,
∴点D关于直线y=x对称的点为P点,此时P(4,3),
同样求出点(4,3)关于原点的对称点(﹣4,﹣3)也满足要求,
∴P点坐标为(4,3),(﹣3,﹣4),(﹣4,﹣3).
故答案为(4,3),(﹣3,﹣4),(﹣4,﹣3).
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.
(1)求m的值与一次函数的解析式;
(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数的图像与轴、轴分别交于点、,以为边在第二象限内作等边.
(1)求点的坐标;
(2)在第二象限内有一点,使,求点的坐标;
(3)将沿着直线翻折,点落在点处;再将绕点顺时针方向旋转15°,点落在点处,过点作轴于.求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是( )
A.35B.C.25D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)发现:如图1,点为线段外一动点,且,,当点位于 时,线段的长取得最大值,最大值为 (用含的式子表示);
(2)应用:如图2,点为线段外一动点,,,以为边作等边,连接,求线段的最大值;
(3)拓展:如图3,线段,点为线段外一动点,且,,,求线段长的最大值及此时的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M(m,4).
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用配方法解下列方程时,配方有错误的是( )
A.x2﹣2x﹣99=0化为(x﹣1)2=100
B.x2+8x+9=0化为(x+4)2=25
C.2t2﹣7t﹣4=0化为(t﹣)2=
D.3x2﹣4x﹣2=0化为(x﹣)2=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个粒子在轴上及第一象限内运动,第1次从运动到,第2次从运动到,第3次从运动到,它接着按图中箭头所示的方向运动.则第2019次时运动到达的点为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点F、C是⊙O上两点,且点C为弧BF的中点,连接AC、AF,过点C作CD⊥AF交AF延长线于点D.
(1)求证:CD是⊙O的切线;
(2)判断线段AB、AF与AD之间的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com