精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠BAC=90°,点DBC中点,AEBCCEAD

(1)求证:四边形ADCE是菱形;

(2)过点DDFCE于点F,∠B=60°,AB=6,求EF的长.

【答案】(1)见解析;(2)EF=3.

【解析】

(1)∵AE∥BC,CE∥AD,∴四边形ADCE为平行四边形,又∵直角三角形斜边上的中线等于斜边的一半,∴AD=CD,∴四边形ADCE是菱形.(2)利用含30°的直角三角形的性质求解即可.

(1)证明:∵AEDCECAD

∴四边形ADCE是平行四边形,

∵∠BAC=90°,点DBC的中点,

ADBDCD

∴平行四边形ADCE是菱形;

(2)解:∵∠B=60°,ADBD

∴△ABD是等边三角形,

∴∠ADB=60°,ADAB=6,

ADCE

∴∠DCE=60°,

CDAD=6,

CFCD=3,

∵四边形ADCE是菱形,

CECD=6,

EF=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A

1)判断直线MN⊙O的位置关系,并说明理由;

2)若OA=4∠BCM=60°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.

请根据以上信息,解答下列问题:

(1)将统计图补充完整;

(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用总时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB切O于A、B两点,CD切O于点E,交PA,PB于C、D,若O的半径为rPCD的周长等于3r,则tanAPB的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,一次函数为常数,)的图像与轴、轴分别相交于点,半径为4的⊙轴正半轴相交于点,与轴相交于点,点在点上方.

1)若直线与弧有两个交点.

①求的度数;

②用含的代数式表示,并直接写出的取值范围;

2)设,在线段上是否存在点,使?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接平面直角坐标系xOy中,任意的三个点PQG.如果∠PQG=90°,那么称∠PQG为“黄金角”.

已知:点A(0,3),B(2,3),C(3,4),D(4,3).

(1)在ABCD四个点中能够围成“黄金角”的点是   

(2)当时,直线ykx+3(k≠0)与以OP为直径的圆交于点Q(点Q与点OP不重合),当∠OQP是“黄金角”时,求k的取值范围;

(3)当Pt,0)时,以OP为直径的圆与△BCD的任一边交于点Q,当∠OQP是“黄金角”时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣2x2+4xx轴交于点OA,把抛物线在x轴及其上方的部分记为C1,将C1y铀为对称轴作轴对称得到C2C2x轴交于点B,若直线yx+mC1C2共有3个不同的交点,则m的取值范围是(

A. 0<m< B. m

C. 0m D. mm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABACADBC边的中线,过点ABC的平行线,过点BAD的平行线,两线交于点E.

1)求证:四边形ADBE是矩形;

2)连接DE,交AB于点O,若BC=8AO=,求cosAED的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣10),B0,﹣),C20),其对称轴与x轴交于点D

1)求二次函数的表达式及其顶点坐标;

2)若Py轴上的一个动点,连接PD,求PB+PD的最小值;

3Mxt)为抛物线对称轴上一动点

①若平面内存在点N,使得以ABMN为顶点的四边形为菱形,则这样的点N共有   个;

②连接MAMB,若∠AMB不小于60°,求t的取值范围.

查看答案和解析>>

同步练习册答案