【题目】在平面直角坐标系中,已知抛物线:和直线:,点和均在直线上.
(1)求直线的解析式;
(2)若抛物线过点,且抛物线与线段有两个不同的交点,求的取值范围;
(3)将直线下移2个单位得到直线,直线与抛物线:交于、两点,若点的横坐标为,点的横坐标为,当,时,求的取值范围.
【答案】(1)y=2x+2;(2)-<a≤-2或a≥4;(3)或
【解析】
(1)利用待定系数法将点A和点B坐标代入直线表达式求解即可;
(2)将点E坐标代入,求出抛物线表达式,将一次直线解析式和二次函数解析式联立方程,求出使得这个方程有两个不同的实数根时a的取值范围,然后再根据抛物线y=ax2-x+1(a≠0)与线段AB有两个不同的交点,利用分类讨论的方法即可求得a的取值范围,本题得以解决;
(3)根据题意得出l1的表达式,联立抛物线和直线表达式,得,根据求出2a+1=,再分0<x1<2,-2<x1<0两种情况,分别解不等式求出b的取值范围即可.
解:(1)∵点和均在直线上,代入得
,
解得:,
∴直线l的解析式为:y=2x+2;
(2)∵抛物线过点,代入抛物线表达式,
得:a+b+1=a,解得b=-1,
∴抛物线表达式为y=ax2-x+1,
∵抛物线与线段AB有两个不同的交点,
令2x+2=ax2-x+1,
则ax2-3x-1=0,
若直线y=2x+2与抛物线y=ax2-x+1(a≠0)有两个不同的交点,
则△=(-3)2-4a×(-1)>0,
解得,a>-,
∵抛物线y=ax2-x+1(a≠0)与线段AB有两个不同的交点,点A(,1)和B(1,4),
∴当-<a<0时,,
解得,-<a≤-2,
当a>0时,,
解得,a≥4;
由上可得,a的取值范围是-<a≤-2或a≥4;
(3)由平移可知直线l1的表达式为:y=2x,
联立直线和抛物线得:,化简得:,
可知x1x2=,x1x2同号,
若0<x1<2,则x2- x1=2,
∴x2=x1+2>2,4a+2b-3<0,①
又∵===4,
∴2a+1=,代入①得:
②,
解得:;
若-2<x1<0,则x2=-2+x1<-2,
∴4a-2b+5<0,③
将2a+1=代入③,得
<2b-3,④
解得:;
综上:或.
科目:初中数学 来源: 题型:
【题目】某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:
收集数据
从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:
八年级 | 78 | 86 | 74 | 81 | 75 | 76 | 87 | 70 | 75 | 90 |
75 | 79 | 81 | 70 | 74 | 80 | 86 | 69 | 83 | 77 | |
九年级 | 93 | 73 | 88 | 81 | 72 | 81 | 94 | 83 | 77 | 83 |
80 | 81 | 70 | 81 | 73 | 78 | 82 | 80 | 70 | 40 |
整理、描述数据
将成绩按如下分段整理、描述这两组样本数据:
成绩(x) | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
八年级人数 | 0 | 0 | 1 | 11 | 7 | 1 |
九年级人数 | 1 | 0 | 0 | 7 | 10 | 2 |
(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)
分析数据
两组样本数据的平均数、中位数、众数、方差如表所示:
年级 | 平均数 | 中位数 | 众数 | 方差 |
八年级 | 78.3 | 77.5 | 75 | 33.6 |
九年级 | 78 | 80.5 | a | 52.1 |
(1)表格中a的值为______;
(2)请你估计该校九年级体质健康优秀的学生人数为多少?
(3)根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.
(1)求抛物线的解析式;
(2)在AC上方的抛物线上有一动点P.
①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;
②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中雅培粹学校举办运动会,全校有3000名同学报名参加校运会,为了解各类运动赛事的分布情况,从中抽取了部分同学进行统计:A.田径类,B.球类,C.团体类,D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.
(1)这次统计共抽取了 位同学,扇形统计图中的 ,的度数是 ;
(2)请将条形统计图补充完整;
(3)估计全校共多少学生参加了球类运动.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C (点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)
(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)
(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,抛物线与轴的一个交点为(点在点的左侧),过点作垂直轴交直线于点.
(1)求抛物线的函数表达式;
(2)将绕点顺时针旋转,点的对应点分别为点
①求点的坐标;
②将拋物线向右平移使它经过点,此时得到的抛物线记为,求出抛物线的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1.在Rt△ABC中,∠C=90°,AC=BC,AP、BP分别平分∠CAB、∠CBA,过点P作DE∥AB交AC于点D,交BC于点E.求证:①点P是线段DE的中点;②求证:BP2=BE·BA;
(2)如图2.在Rt△ABC中,∠C=90°,AB=13,BC=12,BP平分∠ABC,过点P作DE∥AB交AC于点D,交BC于点E,若点P为线段DE的中点,求AD的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com