18£®ÒÑÖª¾ØÐÎOABCÔÚÈçͼËùʾƽÃæÖ±½Ç×ø±êϵÖУ¬µãBµÄ×ø±êΪ£¨4£¬3£©£¬Á¬½ÓAC£®¶¯µãP´ÓµãB³ö·¢£¬ÒÔ2cm/sµÄËٶȣ¬ÑØÖ±ÏßBC·½ÏòÔ˶¯£¬Ô˶¯µ½CΪֹ£¬¹ýµãP×÷PQ¡ÎAC½»Ï߶ÎBAÓÚµãQ£¬ÒÔPQΪ±ßÏòÏÂ×÷Õý·½ÐÎPQMN£¬ÉèÕý·½ÐÎPQMNÓë¡÷ABCÖصþ²¿·ÖͼÐÎÃæ»ýΪS£¨cm2£©£¬ÉèµãPµÄÔ˶¯Ê±¼äΪt£¨s£©£®
£¨1£©ÇëÓú¬tµÄ´úÊýʽ±íʾNµãµÄ×ø±ê£»
£¨2£©ÇóSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ö¸³ötµÄÈ¡Öµ·¶Î§£»
£¨3£©Èçͼ¢Ú£¬µãGÔÚ±ßOCÉÏ£¬ÇÒOG=1cm£¬ÔÚµãP´ÓµãB³ö·¢µÄͬʱ£¬ÁíÓÐÒ»¶¯µãE´ÓµãO³ö·¢£¬ÒÔ2cm/sµÄËٶȣ¬ÑØxÖáÕý·½ÏòÔ˶¯£¬ÒÔOG¡¢OEΪһ×éÁÚ±ß×÷¾ØÐÎOEFG£®ÊÔÇóµ±µãFÂäÔÚÕý·½ÐÎPQMNµÄÄÚ²¿£¨²»º¬±ß½ç£©Ê±tµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©×÷NH¡ÍBCÓÚµãH£¬¸ù¾Ý¡÷BPQ¡×¡÷BCA£¬ÀûÓÃÏàËÆÈý½ÇÐεĶÔÓ¦±ßµÄ±ÈÏàµÈÇóµÃBQ£¬È»ºóÖ¤Ã÷¡÷BPQ¡Õ¡÷HNP£¬ÔòBHÒÔ¼°HNµÄ³¤¼´¿ÉÀûÓÃt±íʾ£¬ÔòNµÄ×ø±ê¼´¿ÉÇó½â£»
£¨2£©Ê×ÏÈÇó³öMNÔÚACÉÏʱtµÄÖµ£¬È»ºó·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬ÀûÓþØÐεÄÃæ»ý¹«Ê½¼´¿ÉÇó½â£»
£¨3£©ÇóµÃACµÄ½âÎöʽ£¬È»ºó¸ù¾ÝPQ¡ÎAC£¬MN¡ÎAC¼´¿ÉÇóµÃPQºÍMNµÄ½âÎöʽ£¬FµÄ×ø±êÊÇ£¨2t£¬1£©£¬°ÑFµÄ×ø±ê·Ö±ð´úÈëPQºÍMNµÄ½âÎöʽ¼´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©×÷NH¡ÍBCÓÚµãH£®
¡ßPQ¡ÎCA£¬
¡à¡÷BPQ¡×¡÷BCA£¬
¡à$\frac{BP}{BC}=\frac{BQ}{AB}$£¬¼´$\frac{2t}{4}=\frac{BQ}{3}$£¬
½âµÃ£ºBQ=$\frac{3}{2}$t£¬
¡ßÔÚ¡÷BPQºÍ¡÷HNP£¬
¡à$\left\{\begin{array}{l}{¡ÏB=¡ÏNHP}\\{¡ÏHPN=¡ÏBQP}\\{PN=QP}\end{array}\right.$£¬
¡à¡÷BPQ¡Õ¡÷HNP£¬
¡àHP=BQ=$\frac{3}{2}$t£¬NH=BP=2t£¬
ÔòBH=2t+$\frac{3}{2}t$=$\frac{7}{2}t$£¬
ÔòNµã×ø±ê£¨4-$\frac{7}{2}$t£¬3-2t£©£»
£¨2£©µ±MNÔÚACÉÏʱ£¬Èçͼ¢Ú£®
¡ß¡÷BPQ¡×¡÷BCA£¬
¡à$\frac{BP}{BC}=\frac{PQ}{AC}$£¬¼´$\frac{2t}{4}=\frac{PQ}{5}$£¬
½âµÃ£ºPQ=$\frac{5}{2}$t£¬
µ±MNÔÚACÉÏʱ£¬PN=PQ=$\frac{5}{2}t$£¬
¡÷ABC¡×¡÷PNC£¬¼´$\frac{PN}{AB}=\frac{CP}{AC}$£¬¼´$\frac{\frac{5}{2}t}{3}=\frac{4-2t}{5}$£¬
½âµÃ£ºt=$\frac{24}{37}$£®
ÔòS=$\frac{25}{4}$t2£®
ÆäÖУ¬0¡Üt¡Ü$\frac{24}{37}$£®
µ±t£¾$\frac{24}{37}$ʱ£¬ÉèPN½»ACÓÚµãE£¬Èçͼ¢Û£®
Ôò¡÷ABC¡×¡÷PEC£¬Ôò$\frac{PE}{AB}=\frac{CP}{AC}$£¬¼´$\frac{PE}{3}=\frac{4-2t}{5}$£¬½âµÃ£ºPE=$\frac{12-6t}{5}$£¬
ÔòS=-3t2+6t£®
ÆäÖУ¬$\frac{24}{37}$£¼t¡Ü2£®
£¨3£©ÉèACµÄ½âÎöʽÊÇy=kx+b£¬
Ôò$\left\{\begin{array}{l}{b=3}\\{4k+b=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=3}\\{k=-\frac{3}{4}}\end{array}\right.$£¬
ÔòÉèÖ±ÏßMNµÄ½âÎöʽÊÇy=-$\frac{3}{4}$x++c£¬
Ôò-$\frac{3}{4}$£¨4-$\frac{7}{2}$t£©+c=3-2t£¬
½âµÃ£ºc=6-$\frac{37}{8}$t£¬
ÔòÖ±ÏߵĽâÎöʽÊÇy=-$\frac{3}{4}$x+£¨6-$\frac{37}{8}$t£©£®
ͬÀí£¬Ö±ÏßPQµÄ½âÎöʽÊÇy=-$\frac{3}{4}$x+£¨$\frac{25}{3}$-$\frac{8}{3}$t£©£¬
FµÄ×ø±êÊÇ£¨2t£¬1£©£®
µ±µãFÂäÔÚMNÉÏʱ£¬
t=$\frac{40}{49}$£®
µ±µãFÂäÔÚPQÉÏʱ£¬
¡àt=$\frac{5}{3}$£® 
¡à$\frac{40}{49}$£¼t£¼$\frac{5}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÒÔ¼°È«µÈÈý½ÇÐεÄÅкÍÐÔÖÊ£¬ÕýÈ·ÇóµÃMNÔÚACÉÏʱ¶ÔÓ¦µÄtµÄÖµÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬ÒÑÖª¡Ï1=60¡ã£¬Èç¹ûCD¡ÎBE£¬ÄÇô¡ÏBµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®60¡ãB£®100¡ãC£®110D£®120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨$\frac{{x}^{2}-4}{{x}^{2}-4x+4}$-$\frac{x}{{x}^{2}-2x}$£©£¨x-$\frac{4}{x}$£©£¬ÆäÖÐx=-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èçͼ£¬ÔÚÖ±½Ç¡÷OABÖУ¬¡ÏAOB=30¡ã£¬OA=2£¬½«¡÷OABÈƵãOÄæʱÕëÐýתn¡ãµÃµ½¡÷OA¡äB¡ä£¬Ôò¡ÏA¡äOB¡¢OA¡ä´óС·Ö±ðΪ£¨¡¡¡¡£©
A£®n¡ã£¬1B£®n¡ã£¬2C£®n¡ã-30¡ã£¬1D£®n¡ã-30¡ã£¬2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬×ãÇòÉÏÊØÃÅÔ±ÔÚO´¦¿ª³öÒ»¸ßÇò£®Çò´ÓÀëµØÃæ1Ã×µÄA´¦·É³ö£¨AÔÚyÖáÉÏ£©£¬°ÑÇò¿´³Éµã£®ÆäÔËÐеĸ߶Èy£¨µ¥Î»£ºm£©ÓëÔËÐеÄˮƽ¾àÀëx£¨µ¥Î»£ºm£©Âú×ã¹Øϵʽy=a£¨x-6£©2+h£®
£¨1£©¢Ùµ±´ËÇò¿ª³öºó£®·ÉÐеÄ×î¸ßµã¾àÀëµØÃæ4Ã×ʱ£®ÇóyÓëxÂú×ãµÄ¹Øϵʽ£®
¢ÚÔÚ¢ÙµÄÇé¿öÏ£¬×ãÇòÂäµØµãC¾àÊØÃÅÔ±¶àÉÙÃ×£¿£¨È¡4$\sqrt{3}$¡Ö7£©
¢ÛÈçͼËùʾ£¬ÈôÔÚ¢ÙµÄÇé¿öÏ£¬ÇóÂäµØºóÓÖÒ»´Îµ¯Æ𣮾ÝʵÑé²âË㣬×ãÇòÔÚ²ÝƺÉϵ¯ÆðºóµÄÅ×ÎïÏßÓëÔ­À´µÄÅ×ÎïÏßÐÎ×´Ïàͬ£¬×î´ó¸ß¶È¼õÉÙµ½Ô­À´×î´ó¸ß¶ÈµÄÒ»°ë£®Çó£ºÕ¾ÔÚ¾àÀëOµã6Ã×µÄB´¦µÄÇòÔ±¼×ÒªÇÀµ½µÚ¶þ¸öÂäµãD´¦µÄÇò£®ËûÓ¦ÔÙÏòÇ°ÅܶàÉÙÃ×£¿£¨È¡2$\sqrt{6}$¡Ö5£©
£¨2£©ÇòÔ±ÒÒÉí¸ßΪ1.75Ã×£®ÔÚ¾àOµã11Ã×µÄH´¦£®ÊÔͼԭµØÔ¾ÆðÓÃÍ·À¹½Ø£®ÊØÃÅÔ±µ÷Õû¿ªÇò¸ß¶È£®Èô±£Ö¤×ãÇòÏÂÂäÖÁHÕýÉÏ·½Ê±µÍÓÚÇòÔ±ÒÒµÄÉí¸ß£®Í¬Ê±ÂäµØµãÔÚ¾àOµã15Ã×Ö®ÄÚ£®ÇóhµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÅ×ÎïÏßy=x2+bx+cÓëxÖá½»ÓÚµãA¡¢BÁ½µã£¨AµãÔÚBµã×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¨0£¬-3£©£¬¶Ô³ÆÖáÊÇÖ±Ïßx=1£¬Ö±ÏßBCÓëÅ×ÎïÏߵĶԳÆÖá½»ÓÚµãD£®
£¨1£©Çó³öÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©ÉèµãEʱÅ×ÎïÏßÉÏÒ»µã£¬ÇÒS¡÷ABE=$\frac{5}{3}$S¡÷ABC£¬Çótan¡ÏECOµÄÖµ£»
£¨3£©µãPÔÚÅ×ÎïÏßÉÏ£¬µãQÔÚÅ×ÎïÏ߶ԳÆÖáÉÏ£¬ÈôÒÔB¡¢C¡¢P¡¢QΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÇóµãP×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{3-x}{x-2}$¡Â£¨x+2-$\frac{5}{x-2}$£©£¬ÆäÖÐx=5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÄÏɳȺµº×Ô¹ÅÒÔÀ´¶¼ÊÇÖйúÁìÍÁ£¬Èçͼ£¬µãA¡¢B¡¢C·Ö±ð±íʾÄÏɳȺµºµÄÈý¸öСµº£¬µºCÔÚµºAµÄ±±Æ«¶«45¡ã·½Ïò£¬µºBÔÚµºCµÄÄÏÆ«Î÷15¡ã·½ÏòÉÏ£¬µºBÔÚµºAµÄÄÏÆ«¶«30¡ã·½Ïò£¬ÇÒµºA¡¢µºBÁ½µºµÄ¾àÀëΪ3º£À
£¨1£©ÇóµºA¡¢µºC¼äµÄ¾àÀ룻
£¨2£©ÎÒ¹úÄϺ£Ä³À×´ï¹Û²âÕ¾·¢ÏÖÒ»ËÒ²»Ã÷¹ú¼®½¢Í§Õý´ÓµºCÕý¶«10º£ÀïµÄµãP´¦ÒÔ20º£Àï/СʱµÄËٶȽӽüµºA£¬Æ亽ÏßΪP¡úC¡úA£¨Ö±ÏßÐнø£©£¬¶øÎÒijº£¾¯´¬ÕýλÓÚµºAÎ÷Æ«ÄÏ60¡ã·½Ïò12º£ÀïµÄµãQ´¦£¬ÊÕµ½Éϼ¶ÃüÁîѸËÙÇ°ÍùAµº£¬Æ亽ÏßΪÏÈÏòÕý¶«º½ÐÐ8º£ÀïÖÁµãM´¦£¬ÔÙÕÛÏòµãAÖ±Ïߺ½ÐУ¬º½ËÙΪ30º£Àï/Сʱ£¬Îʺ£¾¯´¬ÄÜ·ñÏÈÓÚ²»Ã÷¹ú¼®½¢Í§µ½´ïµºA£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬Õý·½ÐÎOABCµÄÁ½¶¥µãA£¬BÇ¡ºÃÔÚ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k£¾0£¬x£¾0£©Í¼ÏóÉÏ£¬ÒÑÖªµãA×ø±êΪ£¨a£¬b£©£®
£¨1£©ÊÔÓú¬a£¬bµÄ´úÊýʽ±íʾµãB×ø±ê£»
£¨2£©¢ÙÈôa=2£¬ÇókµÄÖµ£»
¢ÚÊÔÇób¹ØÓÚaµÄº¯Êý±í´ïʽ£»
£¨3£©Èôk=4£¨$\sqrt{5}+1$£©£¬ÊÔÇóÕý·½ÐÎOABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸