精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AD=12,AB=8,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.
(1)设CP=x,BE=y,试写出y关于x的函数关系式;
(2)当点P在什么位置时,线段BE最长?
(1)∵∠EPB+∠DPC=90°,∠DPC+∠PDC=90°,
∴∠EPB=∠PDC
又∠B=∠C=90°,
∴△BPE△CDP
所以有
BP
CD
=
BE
CP

12-x
8
=
y
x

故y关于x的函数关系式为y=-
1
8
x2+
3
2
x


(2)当x=-
b
2a
=6
时,y有最大值,y最大=
4ac-b2
4a
=
9
2

即当点P距点C为6时,线段BE最长.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=-
3
4
x+6
与坐标轴交于A、B点,AE是∠BAO的平分线,过点B作BE⊥AE,垂足为E,过E作x轴的垂线,垂足为M.
(1)求证:M为OB的中点;
(2)求以E为顶点,且经过点A的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日均销售量的关系如下:
售价单价(元)67891112
日均销售量(瓶)480440400360320240
(1)若记销售单价比每瓶进价多x元时,日均毛利润(毛利润=售价-进价-固定成本)为y元,求y关于x的函数解析式和自变量的取值范围;
(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点o为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式;
(2)如果身高为157.5厘米的小明站在OD之间且离点O的距离为t米,绳子甩到最高处时超过他的头顶,请结合函数图象,求出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,抛物线与坐标轴分别交于A(0,3),B(
3
,0),C(3
3
,0).
(1)求该抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切于点E,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:函数y=-
1
4
x2+x+a的图象的最高点在x轴上.
(1)求a;
(2)如图所示,设二次函数y=-
1
4
x2+x+a图象与y轴的交点为A,顶点为B,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点C关于直线PB的对称点为M,试探索点M是否在抛物线y=-
1
4
x2+x+a上?若在抛物线上,求出M点的坐标;若不在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y1=x2+(m+1)x+m-4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=-1.
(1)求m的值;
(2)画出这条抛物线;
(2)若直线y2=kx+b过点B且与抛物线交于点P(-2m,-3m),根据图象回答:当x取什么值时,y1≥y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,开口向上的抛物线y=ax2+bx+c与x轴交于点A(-6,0),另一个交点是B,与y轴的交点是C,且抛物线的顶点的纵坐标是-2,△AOC的面积为6
3

(1)求点B、C的坐标;
(2)求抛物线的解析式;
(3)M点从点A出发向点C以每秒
3
2
个单位匀速运动.同时点P以每秒2个单位的速度从A点出发,沿折线AB、BC向点C匀速运动,在运动的过程中,设△AMP的面积为y,运动的时间为x,求y与x的函数关系式及y的最大值;
(4)在运动的过程中,过点M作MNx轴交BC边于N,试问,在x轴上是否存在点Q,使△MNQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

附加题:如图1,菱形纸片ABCD中,AB=1,∠B=60°,将纸片翻折(如图2),使D点落在AD所在直线上,并可在直线AD上运动,折痕为EF.当
1
2
<DE<1时,设AB与DC相交于点G(如图).
(1)线段AD与DG相等吗?△ADG与△BCG的面积之和是否随着DE的变化而变化?为什么?
(2)设AD=x,重叠部分(图3中阴影部分)的面积为y,求出y与x之间的函数关系式,并写出自变量x的取值范围以及面积y的取值范围.?

查看答案和解析>>

同步练习册答案