精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:设正方形的边长为a,

当P在AB边上运动时,y= ax;

当P在BC边上运动时,y= a(2a﹣x)=﹣ ax+a2

当P在CD边上运动时,y= a(x﹣2a)= ax﹣a2

当P在AD边上运动时,y= a(4a﹣x)=﹣ ax﹣2a2

大致图象为:

故选C.

【考点精析】解答此题的关键在于理解函数的图象的相关知识,掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%.

1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?

2)今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两种型号设备共8台用于二期工程的污水处理,预算本次购买资金不超过84万元;实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,预计二期工程完成后每月将产生不少于1300吨污水,请你求出用于二期工程的污水处理设备的所有购买方案.

3)经测算:每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为15万元.在(2)中的方案中,哪种购买方案使得设备的各种维护费和电费总费用最低?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随即调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).

分组/元

频数

频率

1000<x<1200

3

0.060

1200<x<1400

12

0.240

1400<x<1600

18

0.360

1600<x<1800

a

0.200

1800<x<2000

5

b

2000<x<2200

2

0.040

合计

50

1.000


请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表a= , b= , 和频数分布直方图
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了(  )天.

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC为对角线,点EAC上一点,连接EBED.

(1)求证:△BEC≌△DEC

(2)延长BEAD于点F,当∠BED120°时,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一直线上,ADBE相交于点G,BEAC相交于点F,ADCE相交于点H,则下列结论:①△ACD≌△BCE;②∠AGB=60°;BF=AH;④△CFH是等边三角形;⑤连CG,则∠BGC=DGC ;EG+GC=GD. 其中正确的有________.(只要写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BE分别在直线ACDF上,若∠AGB=∠EHF,∠C=∠D,可以证明

A=∠F.请完成下面证明过程中的各项“填空”

证明:∵∠AGB=∠EHF(已知)

AGB   (对顶角相等)

∴∠EHF=∠DGF(等量代换)

   EC(理由:   

∴∠   =∠DBA(两直线平行,同位角相等)

又∵∠C=∠D,∴∠DBA   (等量代换)

DF   (内错角相等,两直线平行)

∴∠A=∠F(理由:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EPAC交直线CD于点P,交直线AB于点F,ADP=ACB.

(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;

(2)若将D在线段AB上,点E在线段CB延长线上改为D在线段BA延长线上,点E在线段BC延长线上,其他条件不变(如图2).当∠ABC=90°,BAC=60°,AB=2时,求线段PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知画射线,射线,试写出的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案