如图,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请求出点P的坐标;
(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度.
解:(1)根据题意可设抛物线的解析式为y=a(x+2)(x﹣4).
∵点C(0,﹣8)在抛物线y=a(x+2)(x﹣4)上,
∴﹣8a=﹣8.
∴a=1.
∴y=(x+2)(x﹣4)
=x2﹣2x﹣8
=(x﹣1)2﹣9.
∴抛物线的解析式为y=x2﹣2x﹣8,顶点D的坐标为(1,﹣9).
(2)如图,
设直线CD的解析式为y=kx+b.
∴
解得:.
∴直线CD的解析式为y=﹣x﹣8.
当y=0时,﹣x﹣8=0,
则有x=﹣8.
∴点E的坐标为(﹣8,0).
设点P的坐标为(m,n),
则PM=(m2﹣2m﹣8)﹣(﹣m﹣8)=m2﹣m,EF=m﹣(﹣8)=m+8.
∵PM=EF,
∴m2﹣m=(m+8).
整理得:5m2﹣6m﹣8=0.
∴(5m+4)(m﹣2)=0
解得:m1=﹣,m2=2.
∵点P在对称轴x=1的右边,
∴m=2.
此时,n=22﹣2×2﹣8=﹣8.
∴点P的坐标为(2,﹣8).
(3)当m=2时,y=﹣2﹣8=﹣10.
∴点M的坐标为(2,﹣10).
设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,
①若抛物线y=x2﹣2x﹣8+c与直线y=﹣x﹣8相切,
则方程x2﹣2x﹣8+c=﹣x﹣8即x2﹣x+c=0有两个相等的实数根.
∴(﹣1)2﹣4×1×c=0.
∴c=.
②若抛物线y=x2﹣2x﹣8+c经过点M,
则有22﹣2×2﹣8+c=﹣10.
∴c=﹣2.
③若抛物线y=x2﹣2x﹣8+c经过点E,
则有(﹣8)2﹣2×(﹣8)﹣8+c=0.
∴c=﹣72.
综上所述:要使抛物线与(2)中的线段EM总有交点,抛物线向上最多平移个单位长度,向下最多平移72个单位长度.
科目:初中数学 来源: 题型:
已知:直线y=ax+b与抛物线y=ax2﹣bx+c的一个交点为A(0,2),同时这条直线与x轴相交于点B,且相交所成的角β为45°.
(1)求点B的坐标;
(2)求抛物线y=ax2﹣bx+c的解析式;
(3)判断抛物线y=ax2﹣bx+c与x轴是否有交点,并说明理由.若有交点设为M,N(点M在点N左边),将此抛物线关于y轴作轴反射得到M的对应点为E,轴反射后的像与原像相交于点F,连接NF,EF得△DEF,在原像上是否存在点P,使得△NEP的面积与△NEF的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是( )
| A. | ﹣1<b≤3 | B. | 2<b≤3 | C. | 8≤b<9 | D. | 3≤b<4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
阅读材料:解分式不等式<0
解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:
①或②
解①得:无解,解②得:﹣2<x<1
所以原不等式的解集是﹣2<x<1
请仿照上述方法解下列分式不等式:
(1)≤0
(2)>0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com