精英家教网 > 初中数学 > 题目详情
7.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是(  )
A.2-$\sqrt{3}$B.$\sqrt{3}$+1C.$\sqrt{2}$D.$\sqrt{3}$-1

分析 取AC的中点O,连接AD、DG、BO、OM,如图,易证△DAG∽△DCF,则有∠DAG=∠DCF,从而可得A、D、C、M四点共圆,根据两点之间线段最短可得BO≤BM+OM,即BM≥BO-OM,当M在线段BO与该圆的交点处时,线段BM最小,只需求出BO、OM的值,就可解决问题.

解答 解:AC的中点O,连接AD、DG、BO、OM,如图.
∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,
∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,
∴∠ADG=90°-∠CDG=∠FDC,$\frac{DA}{DC}$=$\frac{DG}{DF}$,
∴△DAG∽△DCF,
∴∠DAG=∠DCF.
∴A、D、C、M四点共圆.
根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO-OM,
当M在线段BO与该圆的交点处时,线段BM最小,
此时,BO=$\sqrt{B{C}^{2}-O{C}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,OM=$\frac{1}{2}$AC=1,
则BM=BO-OM=$\sqrt{3}$-1.
故选:D.

点评 本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点M的运动轨迹是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.已知一组数据:97,98,99,100,101,则这组数据的标准差是$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)计算:[-24×(3-2×20)÷(-2)-2÷26]×4÷10-2
(2)先化简,后求值:(1-$\frac{2}{x+1}$)2÷$\frac{x-1}{x+1}$,其中x=$\frac{1}{3}$
(3)解方程:$\frac{2}{2-x}$+$\frac{{x}^{2}}{{x}^{2}-4}$+$\frac{1}{x+2}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.不等式x+3>8的解集是(  )
A.x>5B.x<5C.x=5D.x=-5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,将△ABC沿BC方向平移至△DEF的位置,若BC=5,BF=15
(1)△ABC向右平移的距离AD=10
(2)已知△ABC的周长为18,则四边形ABFD的周长等于38.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是(  )
A.八边形B.九边形C.十边形D.十一边形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,直线y=-$\frac{\sqrt{3}}{5}$x-$\frac{3\sqrt{3}}{5}$与x轴交于点A,与直线y=-$\frac{\sqrt{3}}{2}$x交于点B.
(1)求点B的坐标;
(2)点B关于x轴的对称点为点C,求△AOC的面积;
(3)过点B作BD⊥x轴于点D,动点P从点D出发,在射线DB上以每秒1个单位长度的速度向下运动,运动的时间为t秒,连接OP,将线段OP以点O为旋转中心,逆时针旋转90°得线段OP′,连接AP′,△AP′O的面积为S,在点P运动过程中(不包含点D),S的值是否与t的值有关?如果有关,请直接写出S与t的函数关系式;如果无关,请直接写出S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,AB=10,C是线段AB上一点,分别以AC、CB为边在AB的同侧作等边△ACP和等边△CBQ,连结PQ,则PQ的最小值是(  )
A.5B.6C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A (11,0),点B(0.6),点P为BC边上的动点(点P不与点B、C重合).经过点O、P折叠该纸片,得点B′和折痕OP(如图①),经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ(如图②).当点C′恰好落在边OA上时,点P的坐标是($\frac{11-\sqrt{13}}{3}$,6),($\frac{11+\sqrt{13}}{3}$,6).

查看答案和解析>>

同步练习册答案