精英家教网 > 初中数学 > 题目详情

【题目】已知:如图1,菱形ABCD的边长为6,DAB=60°,点E是AB的中点,连接AC、EC.点Q从点A出发,沿折线ADC运动,同时点P从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边PQF,PQF与AEC重叠部分的面积为S,当点Q运动到点C时P、Q同时停止运动,设运动的时间为t.

(1)当等边PQF的边PQ恰好经过点D时,求运动时间t的值;当等边PQF的边QF 恰好经过点E时,求运动时间t的值;

(2)在整个运动过程中,请求出S与t之间的函数关系式和相应的自变量t的取值范围;

(3)如图2,当点Q到达C点时,将等边PQF绕点P旋转α°(0<α<360),直线PF分别与直线AC、直线CD交于点M、N.是否存在这样的α,使CMN为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.

【答案】(1)9(秒);(2)0<t3时,S=PG×AG=;当3<t6时,S=

当6<t9时,如图5,S=;当9<t12时,S=

(3)①α=150°如图7,CM=2②α=105°,如图8,CM=12-6③α=60°,如图9,CM=6④α=15°,如图10,CM=12+6

【解析】

试题分析:(1)根据题意求出运动的距离,再除以速度即可求出时间;

(2)分当0<t3时,当3<t6时,当6<t9时,当9<t12时,四种情况,分别求出重叠部分面积即可;

(3)分交点都在BC左侧,顶角为120°,交点都在BC右侧时,顶角可能为30°和120°;交点在BC两侧时,顶角为150°进行讨论求解即可.

试题解析:(1)当等边PQF的边PQ恰好经过点D时,

如图1

AQ=AD=6,t=6÷1=6(秒);当等边PQF的边QF 恰好经过点E时,

如图2

由菱形ABCD的边长为6,DAB=60°,P、Q的速度均为每秒1个单位长度,

知:APQ=60°QEB=60°QEAD,点E是AB的中点,

此时点Q是CD的中点,可求:AD+DQ=6+3=9,所以t=9÷1=9(秒);

(2)

如图3

当0<t3时,由菱形ABCD的边长为6,DAB=60°,可求:PAG=30°

∵∠APQ=60°∴∠AGP=90°,由AP=t,可求:PG=t,AG=t,

S=PG×AG=

当3<t6时,

如图4

AE=3,AP=t,PE=t3,过点C作AB的垂线,垂足为H,

由菱形ABCD的边长为6,DAB=60°,可求:CH=3,BH=3,EH=6,

tanKEB=,过点K作KMAB,可求KM=

SPEK=,可求QAG=30°,又AQG=60°,AQ=t,

可求AGQ=90°,DG=t,GQ=t,SAGQ=,等边三角形APD的面积为:

S==

当6<t9时,如图5

与前同理可求:SFQP=,SGQN=,SKEP=

S==

当9<t12时,

如图6

求出:SPQF=,SQGH=SNEP=SKEF=

S=SPQFSQGHSNEP+SKEF=+=

(3)

逆时针旋转:

①α=150°,如图7此时,易求CNM=NCM=APM=MAP=DAP=30°

可证ACD∽△APM,

易求AP=12,AC=6,AD=6,解得:AM=4,所以,CM=2

②α=105°,如图8

此时,易求CM=CN,CMN=CNM=APM=75°AM=AP=12,

在菱形ABCD中,AD=CD=6,D=120°

可求AC=6,所以,CM=12-6

③α=60°,如图9

此时,易求CMN=MCN=ACB=30°BCPM,由AB=BP=6可得,CM=AC=6

所以:CM=6

④α=15°,如图10

此时,易求APM=M=15°AM=AP=12,所以:CM=AM+AC,CM=12+6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把多项式2x2-y2+x-3y写成两个二项式的和

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数a、b、c的大小关系为:c<b<0<a,则下面的判断正确的是(
A.abc<0
B.a﹣b>0
C.
D.c﹣a>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)1+(﹣2)+|﹣2﹣3|﹣5
(2)﹣24 ×[5﹣(﹣3)2]
(3)( +1 ﹣2.75)×(﹣24)+(﹣12016).
(4)[50﹣( + )×(﹣6)2]÷(﹣7)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年五一小明外出爬山他从山脚爬到山顶的过程中中途休息了一段时间设他从山脚出发后所用的时间为t分钟),所走的路程为s),s与t之间的函数关系如图所示下列说法错误的是( )

A小明中途休息用了20分钟

B小明休息前爬山的平均速度为每分钟70米

C小明在上述过程中所走的路程为6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个射手连续射靶10次,其中1次射中10环,6次射中9环,3次射中8环,则射中( )环的频数最大.
A.6
B.8
C.9
D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+3x+1m=0有两个不相等的实数根.

(1)求m的取值范围;

(2)若m为负整数,求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程x2﹣x﹣c=0有一个根为2,则常数c的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.

1)上述反映了哪两个变量之问的关系?哪个是自变量?哪个是因变量?

2)当所挂重物为3kg时,弹簧有多长?不挂重物呢?

3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?

查看答案和解析>>

同步练习册答案