精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,则此抛物线的解析式为
y=x2-2x+6 或y=x2-2x-4 或y=-x2+2x+4 或y=-x2+2x-6
y=x2-2x+6 或y=x2-2x-4 或y=-x2+2x+4 或y=-x2+2x-6
分析:先根据抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同可知a=±1,则抛物线解析式为y=±x2+bx+c,由顶点在直线x=1上可求出b的值,再根据顶点到x轴的距离为5求出c的值即可.
解答:解:∵抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,
∴a=±1,
∴抛物线解析式为y=±x2+bx+c,
∵抛物线顶点在直线x=1上,
∴a=±1,
∴当a=-1时,-
b
2×(-1)
=1,
∴b=2;
当a=1时,-
b
2×1
=1,
∴b=-2,
∴抛物线解析式为y=-x2+2x+c=-(x-1)2+c+1,或y=x2-2x+c=(x-1)2+c-1,
∵抛物线顶点到x轴的距离为5.
∴当y=x2-2x+c=(x-1)2+c-1
∴|c-1|=5,解得c=-4或c=6,
∴此时抛物线的解析式为:y=x2-2x+6 或y=x2-2x-4;
∵当抛物线的解析式为y=-x2+2x+c=-(x-1)2+c+1时,
∴|c+1|=5,解得c=4或c=-6,
∴此时抛物线的解析式为:y=-x2+2x+4 或y=-x2+2x-6.
∴抛物线的解析式为:y=x2-2x+6或y=x2-2x-4或y=-x2+2x+4或y=-x2+2x-6.
点评:本题考查的是二次函数的图象与几何变换,解答此题的关键是根据抛物线的对称轴方程得出抛物线的顶点式,得出c的值,进而得出抛物线的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案