精英家教网 > 初中数学 > 题目详情
9.如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1=32°;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠An-1BC与∠An-1CD的平分线相交于点An,要使∠An的度数为整数,则n的值最大为6.

分析 根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=$\frac{1}{2}$∠ABC,∠A1CD=$\frac{1}{2}$∠ACD,然后整理得到∠A1=$\frac{1}{2}$∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.

解答 解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,
∵∠ABC的平分线与∠ACD的平分线交于点A1
∴∠A1BC=$\frac{1}{2}$∠ABC,∠A1CD=$\frac{1}{2}$∠ACD,
∴∠A1+∠A1BC=$\frac{1}{2}$(∠A+∠ABC)=$\frac{1}{2}$∠A+∠A1BC,
∴∠A1=$\frac{1}{2}$∠A=$\frac{1}{2}×$64°=32°;
∵A1B、A1C分别平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,
∴∠A=2∠A1
∴∠A1=$\frac{1}{2}$∠A,
同理可得∠A1=2∠A2
∴∠A2=$\frac{1}{4}$∠A,
∴∠A=2n∠An
∴∠An=($\frac{1}{2}$)n∠A=$\frac{64°}{{2}^{n}}$,
∵∠An的度数为整数,
∵n=6.
故答案为:32°,6.

点评 本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的$\frac{1}{2}$是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.如图,
①因为∠1=∠2,所以AD∥BC,理由是内错角相等,两直线平行.
②因为AB∥DC,所以∠3=∠4,理由是两直线平行,内错角相等.
③因为AD∥BC,所以∠5=∠ADC,理由是两直线平行,内错角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知以AE为直径的半圆圆心为O,半径为5,矩形ABCD的顶点B在直径AE上,顶点C在半圆上,AB=8,点P为半圆上一点.
(1)矩形ABCD的边BC的长为4;
(2)将矩形沿直线AP折叠,点B落在点B′.
①点B′到直线AE的最大距离是8;
②当点P与点C重合时,如图所示,AB′交DC于点M.
求证:四边形AOCM是菱形,并通过证明判断CB′与半圆的位置关系;
③当EB′∥BD时,直接写出EB′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端C在OP上滑动,将窗户OM按图示方向向内旋转37°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为28°,点D到点O的距离为30cm.
(1)求B点到OP的距离;
(2)求滑动支架的长.(结果精确到0.1)
(数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,sin 53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=(  )
A.$\frac{2}{5}$B.$\frac{2}{3}$C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.甲、乙两人在直线道路上同起点,同终点,同方向,分别以不同的速度匀速跑步1500m,先到终点的人原地休息,已知甲先出发30s后,乙才出发,甲、乙两人的距离y(m)与甲出发的时间x(s)之间的关系如图所示,下列说法中错误的是(  )
A.甲的速度是2.5m/s,乙的速度为3m/s
B.乙出发150秒后追上了甲
C.乙到达终点时,甲距终点250m
D.甲到达终点比乙晚了70s

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,抛物线y=ax2+bx+c与x轴相交于点B(1,0)和点C(9,0)两点,与y轴的负半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A,M为y轴正半轴上的一个动点,直线MB交⊙P于点D,交抛物线于点N.
(1)求点A坐标和⊙P的半径;
(2)求抛物线的解析式;
(3)当△MOB与以点B、C、D为顶点的三角形相似时,求△CDN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,AB为⊙O的直径,AE是⊙O的弦,C是弧AE的中点,弦CG⊥AB于点D,交AE于点F,过点C作⊙O的切线,交BA延长线于点P,连接BE
(1)求证:PC∥AE
(2)若sinP=$\frac{3}{5}$,CF=5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A,与y轴交于点B.已知抛物线y=-x2+bx+c经过A(3,0),B(0,3)两点.
(1)求此抛物线的解析式和直线AB的解析式;
(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以$\sqrt{2}$个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.

查看答案和解析>>

同步练习册答案