【题目】某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.
收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是 ;(填序号)
①选择七年级1班、2班各15名学生作为调查对象
②选择机器人社团的30名学生作为调查对象
③选择各班学号为6的倍数的30名学生作为调查对象
调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:
A,C,D,D,G,G,F,E,B,G,
C,C,G,D,B,A,G,F,F,A,
G,B,F,G,E,G,A,B,G,G
整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.
某校七年级学生喜欢的课程领域统计表
课程领域 | 人数 |
A | 4 |
B | 4 |
C | 3 |
D | 3 |
E | 2 |
F | 4 |
G | 10 |
合计 | 30 |
分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是 (填A﹣G的字母代号),估计全年级大约有 名学生喜欢这个课程领域.
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.
(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);
(2)猜想AE与DB的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购. 经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.
(1)求甲、乙两种型号设备的价格;
(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ABC+.
(1)求证:AB=AC;
(2)如图2,点D为AC垂直平分线上一点(点D在AC的右侧),连接BD,∠DBC=30°,∠ABC 的平分线AE交BD于点E;
①求证:△ACD 为等边三角形;
②若AE=nBE,△ABC 的面积记为S△ABC ,△BDC的面积记为S△BDC,则的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.
(1)当h=﹣1时,求点D的坐标;
(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度米,顶点距水面米(即米),小孔顶点距水面米(即米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,则此时大孔的水面宽度长为( )
A. 米 B. C. 米 D. 米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交直线AB于点Q,交CA的延长线于点R.
(1)试猜想线段AR与AQ的长度之间存在怎样的数量关系?并证明你的猜想.
(2)如图(2),如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,其它条件不变,问(1)中所得的结论还成立吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件:______ .使得加上这个条件后能够推出AB=CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com