如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,
OC=4,抛物线经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线
交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上
是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的
坐标;若不存在,说明理由.
解:(1)由已知得:A(-1,0) B(4,5)
∵二次函数的图像经过点A(-1,0)B(4,5)
∴
解得:b=-2 c=-3
(2如26题图:∵直线AB经过点A(-1,0)B(4,5)
∴直线AB的解析式为:y=x+1
∵二次函数
∴设点E(t, t+1),则F(t,)
∴EF=
=
∴当时,EF的最大值=
∴点E的坐标为(,)
(3)①如26题图:顺次连接点E、B、F、D得四边形EBFD.
可求出点F的坐标(,),点D的坐标为(1,-4)
S = S + S
=
=
②如26题备用图:ⅰ)过点E作a⊥EF交抛物线于点P,
设点P(m,)
则有: 解得:,
∴,
ⅱ)过点F作b⊥EF交抛物线于,设(n,)
则有: 解得: ,(与点F重合,舍去)∴
综上所述:所有点P的坐标:,(. 能使△EFP组成以EF为直角边的直角三角形.
科目:初中数学 来源: 题型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com