精英家教网 > 初中数学 > 题目详情

如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.

(1)填空:点B的坐标为(_       ),点C的坐标为(_       );
(2)连接OA,若△OAC为等腰三角形.
①求此时抛物线的解析式;
②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

解:(1)B(3,0),C(8,0)      
(2)①作AE⊥OC,垂足为点E
∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4-3=1
又∵∠BAC=90°,∴△ACE∽△BAE,∴
∴AE2=BE·CE=1×4,∴AE=2              
∴点A的坐标为 (4,2)                     
把点A的坐标 (4,2)代入抛物线y=nx2-11nx+24n,得n=-
∴抛物线的解析式为y=-x2x-12        
②∵点M的横坐标为m,且点M在①中的抛物线上
∴点M的坐标为 (m,-m2m-12),由①知,点D的坐标为(4,-2),
则C、D两点的坐标求直线CD的解析式为y=x-4
∴点N的坐标为 (m,m-4)
∴MNm2m-12)-(m-4)=-m2+5m-8 
∴S四边形AMCN=SAMN+SCMNMN·CE=(-m2+5m-8)×4=-(m-5)2+9                           
∴当m=5时,S四边形AMCN=9                    

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图,将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=               

 

 

 

 

 

 

 

(2)P是抛物线y2对称轴上的一个动点,直线xt平行于y轴,分别与直线yx、抛物线y2交于点AB.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t            

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A(-1,0)、B (3,

0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.

(1)求该抛物线的解析式;

(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;

若不存在,说明理由;

(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相

等,若存在,直接写出点R的坐标;若不存在,说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

1) 如图,将抛物线y1=2x2向右平移2个单位,
得到抛物线y2的图象,则y2=              
(2)P是抛物线y2对称轴上的一个动点,直线x
t平行于y轴,分别与直线yx、抛物线y2
于点AB.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的
t的值,则t           

查看答案和解析>>

科目:初中数学 来源: 题型:

(1) 如图,将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=              

(2)P是抛物线y2对称轴上的一个动点,直线xt平行于y轴,分别与直线yx、抛物线y2交于点AB.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t           

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省九年级中考数学试卷4(解析版) 题型:解答题

如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.

(1)填空:点B的坐标为(_        ),点C的坐标为(_        );

(2)连接OA,若△OAC为等腰三角形.

①求此时抛物线的解析式;

②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

 

查看答案和解析>>

同步练习册答案