精英家教网 > 初中数学 > 题目详情

阅读材料:

若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:x1+x2= -,x1x2= 根据上述材料解决下列问题:

已知关于x的一元二次方程x2 = 2(1-m)x-m2 有两个实数根:x1,x2.

(1)求m的取值范围;

(2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值

 

解析:(1)  ----(4分)

(2)  y=2-2m,当m=0.5时,y最小值=1-----(4分)

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是
x<-3或x>1
x<-3或x>1

(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是______.
(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年4月份中考数学模拟试卷(十五)(解析版) 题型:解答题

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是______.
(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年湖北省黄冈市麻城市中考数学模拟试卷(解析版) 题型:解答题

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是______.
(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

同步练习册答案