精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针方向旋转角α(0°<α<90°),得到△A1B1C1,连接BB1.设CB1交AB于点D,A1B1分别交AB、AC于点E、F.
(1)在图中不再添加其他任何线段的情况下,请你找出图中的所有全等三角形,并对不包括△ABC和△A1B1C1的一对全等三角形加以证明;
(2)当α=60°时,求BD的长;
(3)当△BB1D是等腰三角形时,求角α的度数.

解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等;
以证△CBD≌△CA1F为例:
证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°
∴∠A1CF=∠BCD
∵A1C=BC
∴∠A1=∠CBD=45°
∴△CBD≌△CA1F;

(2)作DG⊥BC于G,设CG=x.
在Rt△CDG中,∠DCG=α=60°,∴DG=xtan60°=x
Rt△DGB中,∠DBG=45°,∴BG=GD=x
∵AC=BC=1,∴x+x=1
x=,∴DB=BG=

(3)在△CBB1
∵CB=CB1
∴∠CBB1=∠CB1B=(180°-α)
又△ABC是等腰直角三角形
∴∠ABC=45°
①若B1B=B1D,则∠B1DB=∠B1BD
∵∠B1DB=45°+α
∠B1BD=∠CBB1-45°=(180°-α)-45°=45°-
∴45°+α=45°-
∴α=0°(舍去);
②∵∠BB1C=∠B1BC>∠B1BD,∴BD>B1D,即BD≠B1D;
③若BB1=BD,则∠BDB1=∠BB1D,即45°+α=(180°-α),
解得α=30°,
由①②③可知,当△BB1D为等腰三角形时,α=30°.
分析:(1)依据全等三角形的判定,可找出全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等.由旋转的意义可证∠A1CF=∠BCD,A1C=BC,∠A1=∠CBD=45°,所以△CBD≌△CA1F.
(2)作DG⊥BC于G,在直角三角形CDG和直角三角形DGB中,由三角函数即可求得BD的长.
(3)当△BBD是等腰三角形时,要分别讨论B1B=B1D、BB1=BD、B1D=DB三种情况,第一,三种情况不成立,只有第二种情况成立,求得α=30°.
点评:本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案