精英家教网 > 初中数学 > 题目详情

【题目】如图,已知BD平分∠ABC. 请补全图形后,依条件完成解答.

(1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补;

(2)在射线BE上任取一点F,过点F画直线FGBDBC于点G;

(3)判断∠BFG与∠BGF的数量关系,并说明理由.

【答案】(1)画图见解析;(2)画图见解析;(3)BFG=BGF,理由见解析.

【解析】

(1)如下图,延长AB至点E即可;

(2)如下图,按照题意在射线BE上任取一点F,再过点FFG∥BDBC于点G即可;

(3)根据“角平分线的定义和平行线的性质”结合“已知条件”进行分析解答即可.

(1)如下图图中∠CBE为所求角

(2)如上图图中线段FG为所求线段

(3)∠BFG=∠BGF,理由如下

BDFG,

∴∠1=3,2=4

BD平分∠ABC,

∴∠3=4

∴∠1=2即∠BFG=BGF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AD∥BC,AF平分∠BAD交BC于点F,BE平分∠ABC交AD于点E.求证:

(1)△ABF是等腰三角形;
(2)四边形ABFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.

(1)试求抛物线的解析式;
(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;
(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,ECD边上一点,

(1)将ADE绕点A按顺时针方向旋转,使AD、AB重合,得到ABF,如图1所示.观察可知:与DE相等的线段是   AFB=   

(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;

(3)在(2)题中,连接BD分别交AP、AQM、N,你还能用旋转的思想说明BM2+DN2=MN2吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于E,交BA的延长线于点F.

(1)求证:△APD≌△CPD;
(2)求证:△APE∽△FPA;
(3)猜想:线段PC,PE,PF之间存在什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣2x+1.
(1)求它的对称轴和顶点坐标;
(2)根据图象,确定当x>2时,y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】麒麟区第七中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°AB=3mBC=4mCD=13mAD=12m

1)求出空地ABCD的面积?

2)若每种植1平方米草皮需要300元,问总共需投入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化简:|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,取点D与点E,使得AD=AE,BAE=CAD,连结BD与CE交于点O.求证:

(1)ABD≌△ACE

(2)OB=OC.

查看答案和解析>>

同步练习册答案