【题目】如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN,沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若连接PE,则△PEG∽△CMD.其中正确的个数为( )
A.5个B.4个C.3个D.2个
【答案】B
【解析】
根据折叠的性质得到,于是得到,求得是直角三角形;设AB=x,则AD=2x,由相似三角形的性质可得CP=x,可求BP=PG=x=PN,可判断②③,由折叠的性质和平行线的性质可得∠PMF=∠FPM,可证PF=FM;由,且∠G=∠D=90°,可证△PEG∽△CMD,则可求解.
∵沿着CM折叠,点D的对应点为E,
∴∠DMC=∠EMC,
∵再沿着MP折叠,使得AM与EM重合,折痕为MP,
∴∠AMP=∠EMP,
∵∠AMD=180°,
∴∠PME+∠CME=×180°=90°,
∴△CMP是直角三角形;故①符合题意;
∵AD=2AB,
∴设AB=x,则AD=BC=2x,
∵将矩形ABCD对折,得到折痕MN;
∴AM=DM=AD=x=BN=NC,
∴CMx,
∵∠PMC=90°=∠CNM,∠MCP=∠MCN,
∴△MCN∽△NCP,
∴CM2=CNCP,
∴3x2=x×CP,
∴CP=x,
∴
∴AB=BP,故②符合题意;
∵PN=CP﹣CN=x-x =x,
∵沿着MP折叠,使得AM与EM重合,
∴BP=PG=x,
∴PN=PG,故③符合题意;
∵AD∥BC,
∴∠AMP=∠MPC,
∵沿着MP折叠,使得AM与EM重合,
∴∠AMP=∠PMF,
∴∠PMF=∠FPM,
∴PF=FM,故④不符合题意,
如图,
∵沿着MP折叠,使得AM与EM重合,
∴AB=GE=x,BP=PG=x,∠B=∠G=90°
∴,
∵,
∴,且∠G=∠D=90°,
∴△PEG∽△CMD,故⑤符合题意,
综上:①②③⑤符合题意,共4个,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象和反比例函数的图象相交于两点.
(1)试确定一次函数与反比例函数的解析式;
(2)求的面积;
(3)结合图象,直接写出使成立的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,H为射线OA上一定点,,P为射线OB上一点,M为线段OH上一动点,连接PM,满足为钝角,以点P为中心,将线段PM顺时针旋转,得到线段PN,连接ON.
(1)依题意补全图1;
(2)求证:;
(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
请根据图表中所提供的信息,完成下列问题:
(1)表中________,________,样本成绩的中位数落在证明见解析________范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在范围内的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
课程 | 人数 | 所占百分比 |
声乐 | 14 | |
舞蹈 | 8 | |
书法 | 16 | |
摄影 | ||
合计 |
根据以上信息,解答下列问题:
(1) , .
(2)求出的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕点A顺时针旋转θ(0°≤θ≤360°),得到矩形AEFG.
(1)当点E在BD上时,求证:AF∥BD;
(2)当GC=GB时,求θ;
(3)当AB=10,BG=BC=13时,求点G到直线CD的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com