精英家教网 > 初中数学 > 题目详情
(2013•安徽模拟)如图1、图2分别是10×6的正方形网格,网格中每个小正方形的边长均为1,线段AB的端点A、B均在小正方形的顶点上.

(1)在图1中以AB为边作锐角三角形ABC,使其为轴对称图形(点C在小正方形的顶点上)(画一个即可);
(2)在图2中以AB为边作四边形ABDE(非正方形,点D、E均在小正方形的顶点上),使其为轴对称图形且面积为20(画一个即可).
分析:(1)作一个锐角等腰三角形即可满足题意.
(2)作一个宽为4的矩形即可满足题意.
解答:解:(1)利用格点三角形,作出AC=5,所作图形如下:

(2)作宽为4的矩形,如图所示.
点评:本题考查了利用轴对称设计图案的知识,解答本题的关键是仔细审题,结合题目要求作答,答案不唯一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•安徽模拟)若关于x的方程2x-a=x-2的解为x=3,则字母a的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)函数y=
4x+3  (x≤0)
x+3    (0<x≤1)
-x+5  (x>1)
的最大值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)
16
的平方根是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.

(1)如点P为锐角△ABC的费马点.且∠ABC=60°,PA=3,PC=4,求PB的长.
(2)如图(2),在锐角△ABC外侧作等边△ACB′连结BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.
(3)已知锐角△ABC,∠ACB=60°,分别以三边为边向形外作等边三角形ABD,BCE,ACF,请找出△ABC的费马点,并探究S△ABC与S△ABD的和,S△BCE与S△ACF的和是否相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)(1)图①至图③中,AB=
2
,旋转角∠CAB=30°.
思考:
如图①,当线段AB绕点A旋转至AC的位置时,则点B所经过的路径长为
2
π
6
2
π
6
;图中阴影部分的面积为
π
6
π
6


探究一
如图②,当线段AB变为以AB为直径的半圆时,将其绕点A旋转至图②中位置,则图中阴影部分的面积为
π
6
π
6

如图③,当线段AB变为等腰直角三角形ADB时,∠ADB=90°,将其绕点A旋转,使点B到点C,点D到点E.求图中阴影部分的面积S.
(2)探究二
图④中,一个不规则的图形,其中AB=a,AD=b,点B旋转到点C,旋转角∠CAB=n°(0°<n<180°),点D旋转到点E,则点B所经过的路径长为
nπa
180
nπa
180
;图中阴影部分的面积为
nπ(a2-b2)
360
nπ(a2-b2)
360

查看答案和解析>>

同步练习册答案