精英家教网 > 初中数学 > 题目详情

【题目】如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,…,重复上述过程,经过2018次后,所得到的正六边形边长是原正六边形边长的(
A.( 2016
B.( 2017
C.( 2018
D.( 2019

【答案】C
【解析】解:∵此六边形是正六边形, ∴∠1=180°﹣120°=60°,
∵AD=CD=BC,
∴△BCD为等边三角形,
∴BD= AC,
∴△ABC是直角三角形
又∵BC= AC,
∴∠2=30°,
∴AB= BC= CD,
同理可得,经过2次后,所得到的正六边形是原正六边形边长( 2倍,
∴经过2018次后,所得到的正六边形是原正六边形边长的( 2018
故选C.

【考点精析】通过灵活运用正多边形和圆,掌握圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.

类型

频数

频率

A

30

B

18

0.15

C

0.40

D


(1)学生共人,
(2)补全条形统计图;
(3)若该校共有2000人,骑共享单车的有人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B出发,沿BC向点C匀速运动,速度为1cm/s;过点P作PD∥AB,交AC于点D,同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动,连接PQ.设运动时间为t(s)(0<t<2.5),解答下列问题:

(1)当t为何值时,四边形ADPQ为平行四边形?
(2)设四边形ADPQ的面积为y(cm2),试确定y与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使S四边形ADPQ:SPQB=13:2?若存在,请说明理由,若存在,求出t的值,并求出此时PQ的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=CB,ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.

① 求证:△ABE≌△CBD

② 若∠CAE30°,求BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个隧道的横断面,它的形状是以点O为圆心的圆的一部分,如果圆的半径为 m,弦CD=4m,那么隧道的最高处到CD的距离是(
A. m
B.4m
C. m
D.6m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a>b请用“>”“<”填空:

(1)a-1________b-1;(2)a________b;(3)ac________bc;(4)-3a________-3b;(5)-ac________bc.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.

(1)甲乙两种票的单价分别是多少元?

(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,ABPDCE全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,AC=BCCD=CEACB=DCE=αADBE相交于点M,连接CM

(1)求证:BE=AD;并用含α的式子表示∠AMB的度数;

(2)当α=90°时,取ADBE的中点分别为点PQ,连接CPCQPQ如图2,判断CPQ的形状,并加以证明.

查看答案和解析>>

同步练习册答案