精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动.设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为(     )

A.                 B.                C.                  D.

 

【答案】

B.

【解析】

试题分析:由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8-t,再根据正方形的性质的OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以SOBE=SOCF,这样S四边形OECF=SOBC=16,于是S=S四边形OECF-SCEF=16-(8-t)•t,然后配方得到S= (t-4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.

根据题意BE=CF=t,CE=8-t,

∵四边形ABCD为正方形,

∴OB=OC,∠OBC=∠OCD=45°,

∵在△OBE和△OCF中

 ,

∴△OBE≌△OCF(SAS),

∴SOBE=SOCF

∴S四边形OECF=SOBC=×82=16,

∴S=S四边形OECF-SCEF=16-(8-t)•t=t2-4t+16=(t-4)2+8(0≤t≤8),

∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.

故选B.

考点:动点问题的函数图象.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案