精英家教网 > 初中数学 > 题目详情

【题目】从﹣3,﹣2,﹣1,0,1,3,4这七个数中随机抽取一个数记为a,a的值既是不等式组 的解,又在函数y= 的自变量取值范围内的概率是

【答案】
【解析】解:∵不等式组 的解集是:﹣ <x< , ∴a的值既是不等式组 的解的有:﹣3,﹣2,﹣1,0,
∵函数y= 的自变量取值范围为:2x2+2x≠0,
∴在函数y= 的自变量取值范围内的有﹣3,﹣2,4;
∴a的值既是不等式组 的解,又在函数y= 的自变量取值范围内的有:﹣3,﹣2;
∴a的值既是不等式组 的解,又在函数y= 的自变量取值范围内概率是:
故答案为:
由a的值既是不等式组 的解,又在函数y= 的自变量取值范围内的有﹣3,﹣2,可直接利用概率公式求解即可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在所给正方形网格(每个小网格的边长是1)图中完成下列各题.

1)格点△ABC(顶点均在格点上)的面积=_________

2)画出格点△ABC关于直线DE对称的△A1B1C1

3)在DE上画出点P,使PB+PC最小,并求出这个最小值.

【答案】1)面积等于52图形见解析3)最小值是根号17

【解析】试题分析:(1)利用勾股定理求出三角形边长,并证明是直角三角形求面积.(2)画出A,B,C的对称点A1,B2,C3,连接三角形.(3)利用对称利用两点之间直线最短求最小值.

试题解析:

1分别利用勾股定理求得AC=2,AB=,BC= ,所以∠ACB=90°面积等于=5.

2)画出A,B,C的对称点A1,B2,C3,连接三角形.如下图.

3)作B点对称B’,连接B’CDEP,B’P+PC=BP+CP,所以使PB+PC最小.

利用勾股定理B’C=

所以最小值是根号17.

点睛:平面上最短路径问题

(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.

(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.

(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.

型】解答
束】
23

【题目】已知一次函数y=kx+7的图像经过点A(2,3)

(1)求k的值;

(2)判断点B(-1,8),C(3,1)是否在这个函数的图像上,并说明理由;

(3)当-3<x<-1时,求y的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组: .请结合题意填空,完成本体的解法.

(1)解不等式(1),得________;

(2)解不等式(2),得________;

(3)把不等式 (1)和 (2)的解集在数轴上表示出来.

(4)原不等式的解集为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行于y轴的动直线a的表达式为x=t,直线b的表达式为y=x,直线c的表达式为y=x+2且动直线a分别交直线bc于点DEED的上方),Py轴上一个动点,且满足PDE是等腰直角三角形,则点P的坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:

已知:如图,四边形ABCD中,∠A=106°, ∠ABC=74°,BD⊥DC于点D, EF⊥DC于点F.

求证:∠1=∠2.

证明: ∵∠A=106°,∠ABC=74° (已知)

∴∠A+∠ABC=180°

( )

∴∠1=

∵BD⊥DC,EF⊥DC (已知)

∴∠BDF=∠EFC=90°( )

∴BD∥ ( )

∴∠2= ( )

(已证)

∴∠1=∠2 ( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为3EF分别是ABBC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,任意一点P(a,b)经平移后对应点P1(a﹣2,b+3),将△ABC作同样的平移得到△A1B1C1

(1)求A1,B1,C1的坐标;

(2)指出这一平移的平移方向和平移距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】麻城市思源实验学校自从开展“高效课堂”模式以来,在课堂上进行当堂检测效果很好.每节课40分钟教学,假设老师用于精讲的时间x(单位:分钟)与学生学习收益量y的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.
(1)求老师精讲时的学生学习收益量y与用于精讲的时间x之间的函数关系式;
(2)求学生当堂检测的学习收益量y与用于当堂检测的时间x的函数关系式;
(3)问此“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末小明和同学们去“绿博园”的枫湖坐船,观赏风景;如图,小明正在A处的小船上,B处小船上的游客发现点A在点B的正西方向上,C处小船上的游客发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120米.

(1)求出此时点A到点C的距离;
(2)若小明从A处沿AC方向向C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时小明所乘坐的小船走的距离.(注:结果保留根号)

查看答案和解析>>

同步练习册答案