精英家教网 > 初中数学 > 题目详情
在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).
(1)求这个二次函数的解析式;
(2)求△ABC的外接圆半径r;
(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.
分析:(1)设二次函数y=ax2+bx+c的解析式,首先求出B点坐标,然后由△AOB∽△BOC,根据相似三角形的对应边成比例,求出OC的长度,得出C点坐标;根据相似三角形的对应角相等得出∠OAB=∠OBC,从而得出∠ABC=90°;由y=ax2+bx+c图象经过点A(-4,0),B(0,-3),运用待定系数法即可求出此二次函数的关系式;
(2)由已知条件证明△ABC是直角三角形,利用直角三角形的外接圆的直径等于其斜边即r=
c
2
,求解即可;
(3)如果以点O、A、N为顶点的三角形是等腰三角形,那么分三种情况讨论:①当AN=ON时,②当AN=OA时,当ON=OA时,针对每一种情况,都应首先判断M点是否在线段AC上.
解答:解:(1)∵△AOB∽△BOC(相似比不为1),
OC
OB
=
OB
OA

又∵OA=4,OB=3,
∴OC=
3×3
4
=
9
4

∴点C(
9
4
,0),
设图象经过A、B、C三点的函数解析式是y=ax2+bx+c,则:
0=16a-4b+c
-3=c
0=
81
16
a+
9
4
b+c  

解得,a=
1
3
,b=
7
12

∴这个函数的解析式是y=
1
3
x2+
7
12
x-3;

(2)∵△AOB∽△BOC(相似比不为1),
∴∠BAO=∠CBO.
又∵∠ABO+∠BAO=90°,
∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°
∴AC是△ABC外接圆的直径.
∴r=
1
2
AC=
1
2
×(OA+OC)=
25
8


(3)∵点N在以BM为直径的圆上,
∴∠MNB=90°,
①当AN=ON时,点N在OA的中垂线上,
∴点N1是AB的中点,M1是AC的中点.
∴AM1=r=
25
8
,点M1(-
7
8
,0),即m1=-
7
8

②当AN=OA时,Rt△AM2N2≌Rt△ABO,
∴AM2=AB=5,点M2(1,0),即m2=1.
③当ON=OA时,点N显然不能在线段AB上.
综上,符合题意的点M(m,0)存在,有两解:
m=-
7
8
,或1.
点评:本题着重考查了待定系数法求二次函数解析式,相似三角形的性质,探究等腰三角形的构成情况等重要知识点,综合性强,能力要求高.考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=12
3
cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以2
3
cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.
(1)求∠OAB的度数.
(2)以OB为直径的⊙O′与AB交于点M,当t为何值时,PM与⊙O′相切?
(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.
(4)是否存在△APQ为等腰三角形?若存在,求出相应的t值;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系xOy中,直线y=kx+b交x轴负半轴于A(-1,0),交y轴正半轴于B,C是x轴负半轴上一点,且CA=
34
CO,△ABC的面积为6.
精英家教网
(1)求C点的坐标;
(2)求直线AB的解析式;
(3)D是第二象限内一动点,且OD⊥BD,直线BE垂直射线CD于E,OF⊥OD交直线BE于F.当线段OD,BD的长度发生改变时,∠BDF的大小是否发生改变?若改变,请说明理由;若不变,请证明并求出其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在直角坐标系xOy中,A、B是x轴上两点,以AB为直径的圆与y轴交于点C,设A、B、C的抛精英家教网物线的解析式为y=
1
6
x2-mx+n
且方程
1
6
x2-mx+n
=0的两根的倒数和为
5
36

(1)求n的值;
(2)求m的值和A、B、C三点的坐标;
(3)点P、Q分别从A、O两点同时出发,以相同的速度沿AB、OC向B、C运动,连接PQ并延长,与BC交于点M,设AP=k,问是否存在这样的k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系xoy中,一次函数y=
3
2
2
x-3
的图象与x轴、y轴分别交于点B和点A,点C的坐标是(0,1),点D在y轴上且满足∠BCD=∠ABD.求D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系xOy中,直线y=kx+b交x轴负半轴于A(-1,0),交y轴正半轴于B,C是x轴负半轴上一点,且CO=4AO,△ABC的面积为6.
(1)点C的坐标是
(-4,0)
(-4,0)
;点B的坐标是
(0,4)
(0,4)

(2)求直线AB的解析式;
(3)点D是第二象限内一动点,且OD⊥BD,直线BM垂直射线CD于E,OF⊥OD交直线BM于F,当线段OD、BD的长度发生改变时,∠BDF的大小是否发生改变?若改变,请说明理由;若不变,请证明并求出其值.

查看答案和解析>>

同步练习册答案