精英家教网 > 初中数学 > 题目详情
如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,
(1)求过E点的反比例函数解析式;
(2)求折痕AD的解析式.
分析:(1)先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,代入反比例函数的一般形式求其解析式即可;
(2)在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标,利用待定系数法求得AD所在直线的解析式即可.
解答:解:(1)依题意可知,折痕AD是四边形OAED的对称轴,
∴在Rt△ABE中,AE=AO=10,AB=8,BE=
AE2-AB2
=
102-82
=6,
∴CE=4,
∴E(4,8),
设过E点的反比例函数的解析式为y=
k
x

∴k=4×8=32,
∴过E点的反比例函数的解析式为y=
32
x


(2)在Rt△DCE中,DC2+CE2=DE2
又∵DE=OD,
∴(8-OD)2+42=OD2
∴OD=5,
∴D(0,5).
∵OA=10,
∴点A的坐标为(10,0),
设折痕AD所在直线的解析式为y=kx+b,
10k+b=0
b=5

解得k=-0.5,b=5,
∴折痕AD的解析式y=-0.5x+5.
点评:本题主要考查了反比例函数的综合知识,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在x轴上,点C在y轴上,OA=9,OC=15,将矩形纸片OABC绕O点顺时针旋转90°得到矩形OA1B1C1.将矩形OA1B1C1折叠,使得点B1落在x轴上,并与x轴上的点B2重合,折痕为A1D.
(1)求点B2的坐标;
(2)求折痕A1D所在直线的解析式;
(3)在x轴上是否存在点P,使得∠BPB1为直角?若存在,求出点P的坐标;若不存在,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA、OC是方程
2
x
=
9-x
10
的两个根(OA>OC),在AB边上取一点D,将纸片沿CD翻折,使点B恰好落在OA边上的点E处.
(1)求OA、OC的长;
(2)求D、E两点的坐标;
(3)若线段CE上有一动点P自C点沿CE方向向E点匀速运动(点P运动到点E后停止运动),运动的速度为每秒1个单位长度,设运动的时间为t秒,过P点作ED的平行线交CD于点M.是否存在这样的t 值,使以C、E、M为顶点的三角形为等腰三角形?若存在,请直接写出t值及相应的时刻点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.
(1)求过E点的反比例函数解析式.
(2)求出D点的坐标.

查看答案和解析>>

同步练习册答案