精英家教网 > 初中数学 > 题目详情

如图:中,。图 中 与 互余的角有(       )

     A、0个      B、1个       C、2个        D、3个

 

【答案】

C

【解析】所在的两个直角三形为ABC和ACD, B和∠ACD与互余,故选C.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
精英家教网
(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=
1
2
x
的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;
(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,精英家教网原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,线段PB过圆心O,交圆O于A,B两点,PC切圆O于点C,作AD⊥PC,垂足为D,连接AC,BC.
(1)写出图1中所有相等的角(直角除外),并给出证明;
(2)若图1中的切线PC变为图2中割线PCE的情形,PCE与圆O交于C,E两精英家教网点,AE与BC交于点M,AD⊥PE,写出图2中相等的角(写出三组即可,直角除外);
(3)在图2中,证明:AD•AB=AC•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,AB=AC,CD⊥BA交BA的延长线于点D.一正方形EFGH的一条边EH与AC边在一条直线上,另一条边EF恰好经过点B.
(1)在图1中,请你通过观察、测量BE与CD的长度,猜想并写出BE与CD满足的数量关系,然后证明你的猜想;
(2)将正方形EFGH沿AC方向平移到图2所示的位置时,EH边仍与AC边在同一直线上,另一条边EF交BC边于点M,过点M作MN⊥BA于点N.此时请你通过观察、测量ME、MN与CD的长度,猜想并写出ME、MN与CD之间满足的数量关系,然后证明你的猜想;
(3)将正方形EFGH沿CA方向平移到图3所示的位置时,EH边仍与AC边在同一直线上,另一条边EF的延长线交CB边的延长线于点M,过点M作MN⊥AB交AB的延长线于点N.此时请你猜想并写出ME、MN与CD之间满足的数量关系,不需证明.
精英家教网

查看答案和解析>>

同步练习册答案