分析 (1)首先证明△PBC≌△P′BA,推出△APP′是直角三角形,利用勾股定理即可证明.
(2)结论仍然成立.证明方法类似.
解答 (1)证明:如图1中,
∵△ABC,△PBP′都是等边三角形,
∴∠ABC=∠PBP′=∠BP′P=60°,AB=BC,PB=BP′=PP′,
∴∠PBC=∠P′BA,
在△PBC和△P′BA中,
$\left\{\begin{array}{l}{BC=BA}\\{∠PBC=∠P′BA}\\{PB=P′B}\end{array}\right.$
∴△PBC≌△P′BA,
∴∠BP′A=∠BPC=150°,PC=P′A,
∴∠AP′P=90°,
∴AP2=AP′2+PP′2,∵AP′=PC,PP′=PB,
∴PA2=PB2+PC2.
(2)结论仍然成立.
理由如下:如图2中,
∵△ABC,△PBP′都是等边三角形,
∴∠ABC=∠PBP′=∠BP′P=60°,AB=BC,PB=BP′=PP′,
∴∠PBC=∠P′BA,
在△PBC和△P′BA中,
$\left\{\begin{array}{l}{BC=BA}\\{∠PBC=∠P′BA}\\{PB=P′B}\end{array}\right.$
∴△PBC≌△P′BA,
∴∠BP′A=∠BPC=300°,PC=P′A,
∴∠AP′P=∠PP′B+∠AP′B=90°,
∴AP2=AP′2+PP′2,∵AP′=PC,PP′=PB,
∴PA2=PB2+PC2.
点评 本题考查全等三角形的判定和性质.等边三角形的性质.勾股定理等知识,解题的关键是正确寻找全等三角形,灵活利用勾股定理解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com