分析 延长CP交AB于E,作BF∥CE交AD的延长线于F,如图,根据平行线分线段成比例定理,由BF∥CP得到$\frac{DF}{DP}$=$\frac{BD}{CD}$=1,即DF=DP,根据比例性质,由$\frac{AP}{AD}$=$\frac{2}{3}$得到AP=2PD,则AP=PF,接着由PE∥BF得到$\frac{AE}{BE}$=$\frac{AP}{PF}$=1,即AE=BE,然后根据重心的定义即可得到结论.
解答 证明:延长CP交AB于E,作BF∥CE交AD的延长线于F,如图,
∵AD是△ABC的中线,
∴BD=CD,
∵BF∥CP,
∴$\frac{DF}{DP}$=$\frac{BD}{CD}$=1,即DF=DP,
∵$\frac{AP}{AD}$=$\frac{2}{3}$,
∴AP=2PD,
∴AP=PF,
∵PE∥BF,
∴$\frac{AE}{BE}$=$\frac{AP}{PF}$=1,即AE=BE,
∴CE为△ABC的中线,
∴P是△ABC的重心.
点评 本题考查了三角形的重心:三角形的重心是三角形三边中线的交点.也考查了平行线分线段成比例定理.
科目:初中数学 来源: 题型:选择题
A. | $\frac{3}{5}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com