精英家教网 > 初中数学 > 题目详情
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量(千克)随销售单价(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为(元),解答下列问题:
(1)求的关系式;
(2)当取何值时,的值最大?
(3)如果公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少元?
(1) y=-2x2+340x-12000;(2)85;(3)75.

试题分析:(1)利用每千克销售利润×销售量=总销售利润列出函数关系式,整理即可解答;
(2)利用配方法可求最值;
(3)把函数值代入,解一元二次方程解决问题.
试题解析:(1)y=(x-50)•w=(x-50)•(-2x+240)=-2x2+340x-12000,
因此y与x的关系式为:y=-2x2+340x-12000.
(2)y=-2x2+340x-12000=-2(x-85)2+2450,
∴当x=85时,在50<x≤90内,y的值最大为2450.
(3)当y=2250时,可得方程-2(x-85)2+2450=2250,
解这个方程,得x1=75,x2=95;
根据题意,x2=95不合题意应舍去.
答:当销售单价为75元时,可获得销售利润2250元.
考点: 二次函数的应用.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,二次函数的图像经过点和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.

(1)求点B的坐标;
(2)求二次函数的解析式;
(3)过点B作直线BC平行于x轴,直线BC与二次函数图像的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2.

(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-x+150,成本为20元/件,月利润为W(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W(元).
(1)若只在国内销售,当x=1000(件)时,y=         (元/件);
(2)分别求出W、W与x间的函数关系式(不必写x的取值范围);
(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

动物园计划用长为120米的铁丝围成如图所示的兔笼,(不包括顶棚)供学习小组的同学参观,其中一面靠墙,(墙足够长)怎样设计围成的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+2x+c与其对称轴相交于点A(1,4),与x轴正半轴交于点B.
(1)求这条抛物线的函数关系式;
(2)在抛物线对称轴上确定一点C,使△ABC是等腰三角形,求出所有点C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,顶点为(4,1)的抛物线交轴于点,交轴于,两点(点在点的左侧),已知点坐标为(6,0).

(1)求此抛物线的解析式;
(2)联结AB,过点作线段的垂线交抛物线于点,如果以点为圆心的圆与抛物线的对称轴相切,先补全图形,再判断直线与⊙的位置关系并加以证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间.问:当点运动到什么位置时,的面积最大?求出的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正常水位时,抛物线拱桥下的水面宽为BC=20m,水面上升3m达到该地警戒水位DE时,桥下水面宽为10m.若以BC所在直线为x轴,BC的垂直平分线为y轴,建立如图所示的平面直角坐标系.

(1)求桥孔抛物线的函数关系式;
(2)如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没;
(3)当达到警戒水位时,一艘装有防汛器材的船,露出水面部分的宽为4m,高为0.75m,通过计算说明该船能否顺利通过此拱桥?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是(    )
A.(1,0)B.(-1,0)C.(-2,1)D.(2,-1)

查看答案和解析>>

同步练习册答案