精英家教网 > 初中数学 > 题目详情
如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC分别交AB、AC于M、N,且MN=a.另一个与△ABC全等的等边△DEF的顶点D在MN上移动(不与点M、N重合),并始终保持EF∥BC,DF交AB于点P,DE交AC于点Q.
(1)试判断四边形APDQ的形状,并进行证明;
(2)设DM为x,四边形APDQ的面积为y,试探究y与x的函数关系式;四边形APDQ的面积能取到最大值吗?如果能,请求出它的最大值,并确定此时D点的位置.
(3)如图(2),当D点和圆心O重合时,请判断四边形APDQ的形状,并说明理由;你能发现四边形APDQ的面积与△ABC的面积有何关系吗?为什么?

【答案】分析:(1)应该是平行四边形,已知∠BAC=∠FOE=60°,那么证明∠BPD=∠CQD=60°就是关键,可根据FE∥MN∥BC,用内错角相等,得出∠AMN=∠MDP=∠ANM=∠EDN=60°,那么可根据三角形的内角和得出∠DPM=∠DQN=60°,由此可得出四边形APDQ的两组对边都平行,也就得出是平行四边形的结论.
(2)要求四边形的面积,就要知道一边和这边上的高分别是多少,告诉了DM=x,那么DN=a-x,根据(1)不难得出三角形MDP和DQN都是等边三角形,那么DP=x,DP边上的高可以用DN•sin60°来表示,那么可根据平行四边形的面积公式求出y与x的函数关系式.然后可根据函数的性质得出面积的最大值和D的位置.
(3)应该是菱形,如果D,O重合,那么OM=ON,那么两个等边三角形MDP和DQN就应该全等,那么OP=OQ,因此平行四边形APOQ应该是菱形,有三角形ABC的边长又知道它是等边三角形,那么它的面积就不难求出,(2)中已经得出了平行四边形APOQ的面积,那么可以通过比较得出他们的关系.
解答:解:(1)可知四边形APDQ为平行四边形
证明:由题知△ABC≌△DEF且△ABC
△DEF为等边三角形
∴∠BAC=∠EDF=60°
又∵EF∥BC,MN∥BC
∴EF∥BC∥MN
∴∠MDF=∠DFE=60°,∠FED=∠EDN=60°
∠MNA=∠BCA=60°,∠QDN=∠QND=60°
∴△DQN为等边三角形
∴∠DQN=∠PDQ=60°,
∴PD∥AQ
∴∠BAC=∠DQN=60°,
∴AP∥DQ
∴四边形APDQ为平行四边形.

(2)y=x(a-x)=-x2+ax=-(x-2+a2
∴当x取时,即D点位于MN的中点位置时,四边形APDQ的面积最大,且最大值为a2

(3)当D点和圆心O重合时,四边形APDQ为菱形,
理由:由(1)、(2)可知,△MPO,△QON为等边三角形,且MO=ON,
所以△MPQ≌△QON.
因此OP=OQ,又因为四边形APDQ为平行四边形.
所以可知四边形APDQ为菱形,
由题可知,S△ABC=a2,而由(2)知S四边形APDQ=a2

∴S四边形APDQ=S△ABC
点评:本题主要考查了平行四边形,菱形的判定,全等三角形的判定和性质以及二次函数的综合应用等知识点,通过特殊角来得出线段间的关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC分别交AB、AC于M、N,且MN=a.另一个与△ABC全等的等边△DEF的顶点D在MN上移动(不与点M、N重合),并始终保持EF∥BC,DF交AB于点P,DE交AC于点Q.
(1)试判断四边形APDQ的形状,并进行证明;
(2)设DM为x,四边形APDQ的面积为y,试探究y与x的函数关系式;四边形APDQ的面积能取到最大值吗?如果能,请求出它的最大值,并确定此时D点的位置.
(3)如图(2),当D点和圆心O重合时,请判断四边形APDQ的形状,并说精英家教网明理由;你能发现四边形APDQ的面积与△ABC的面积有何关系吗?为什么?

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》中考题集(51):34.4 二次函数的应用(解析版) 题型:解答题

如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC分别交AB、AC于M、N,且MN=a.另一个与△ABC全等的等边△DEF的顶点D在MN上移动(不与点M、N重合),并始终保持EF∥BC,DF交AB于点P,DE交AC于点Q.
(1)试判断四边形APDQ的形状,并进行证明;
(2)设DM为x,四边形APDQ的面积为y,试探究y与x的函数关系式;四边形APDQ的面积能取到最大值吗?如果能,请求出它的最大值,并确定此时D点的位置.
(3)如图(2),当D点和圆心O重合时,请判断四边形APDQ的形状,并说明理由;你能发现四边形APDQ的面积与△ABC的面积有何关系吗?为什么?

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》中考题集(47):20.5 二次函数的一些应用(解析版) 题型:解答题

如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC分别交AB、AC于M、N,且MN=a.另一个与△ABC全等的等边△DEF的顶点D在MN上移动(不与点M、N重合),并始终保持EF∥BC,DF交AB于点P,DE交AC于点Q.
(1)试判断四边形APDQ的形状,并进行证明;
(2)设DM为x,四边形APDQ的面积为y,试探究y与x的函数关系式;四边形APDQ的面积能取到最大值吗?如果能,请求出它的最大值,并确定此时D点的位置.
(3)如图(2),当D点和圆心O重合时,请判断四边形APDQ的形状,并说明理由;你能发现四边形APDQ的面积与△ABC的面积有何关系吗?为什么?

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(47):2.4 二次函数的应用(解析版) 题型:解答题

如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC分别交AB、AC于M、N,且MN=a.另一个与△ABC全等的等边△DEF的顶点D在MN上移动(不与点M、N重合),并始终保持EF∥BC,DF交AB于点P,DE交AC于点Q.
(1)试判断四边形APDQ的形状,并进行证明;
(2)设DM为x,四边形APDQ的面积为y,试探究y与x的函数关系式;四边形APDQ的面积能取到最大值吗?如果能,请求出它的最大值,并确定此时D点的位置.
(3)如图(2),当D点和圆心O重合时,请判断四边形APDQ的形状,并说明理由;你能发现四边形APDQ的面积与△ABC的面积有何关系吗?为什么?

查看答案和解析>>

科目:初中数学 来源:2005年山东省济南市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•济南)如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC分别交AB、AC于M、N,且MN=a.另一个与△ABC全等的等边△DEF的顶点D在MN上移动(不与点M、N重合),并始终保持EF∥BC,DF交AB于点P,DE交AC于点Q.
(1)试判断四边形APDQ的形状,并进行证明;
(2)设DM为x,四边形APDQ的面积为y,试探究y与x的函数关系式;四边形APDQ的面积能取到最大值吗?如果能,请求出它的最大值,并确定此时D点的位置.
(3)如图(2),当D点和圆心O重合时,请判断四边形APDQ的形状,并说明理由;你能发现四边形APDQ的面积与△ABC的面积有何关系吗?为什么?

查看答案和解析>>

同步练习册答案