精英家教网 > 初中数学 > 题目详情

如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是(  )

C.

解析试题分析:∵∠ABE=45°,∠A=90°,
∴△ABE是等腰直角三角形,
∴AE=AB=2,BE=AB=2
∵BE=DE,PD=x,
∴PE=DE﹣PD=2﹣x,
∵PQ∥BD,BE=DE,
∴QE=PE=2﹣x,
又∵△ABE是等腰直角三角形(已证),
∴点Q到AD的距离=(2﹣x)=2﹣x,
∴△PQD的面积y=x(2﹣x)=﹣(x2﹣2x+2)=﹣(x﹣2+
即y=﹣(x﹣2+
纵观各选项,只有C选项符合.
【考点】动点问题的函数图象.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.

(1)根据图象,求y与x之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货单价;
(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

抛物线y=(x﹣1)2﹣3的对称轴是(  )

A.y轴 B.直线x=﹣1 C.直线x=1 D.直线x=﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

函数在同一直角坐标系中的图象可能是(   )

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

苏科版教材中有这样一句话:“一般地,如果二次函数的图象与x轴有两个公共点,那么一元二次方程有两个不相等的实数根.”据此判断方程x2-2x=-2实数根的情况是  (    )

A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,二次函数y=ax2+bx+c的图象经过(-1,0)、(0,3),下列结论中错误的是(  )

A.abc<0 B.9a+3b+c=0 C.a-b="-3"  D. 4ac﹣b2<0 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

函数在同一直角坐标系中的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a,b的大小关系为 (  )

A.a>b B.a<b
C.a=b D.不能确定

查看答案和解析>>

同步练习册答案