精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,CA⊥DB,A为垂足,BF⊥DC,F为垂足,AB=AC,DB=7,DA=2,
CA,BF交于E,则EC的长为(  )
分析:由垂直的性质可以得出∠DBE=∠ACD,由ASA就可以得出△ABE≌△ACD,得出AD=AE,进而就可以得出CE的值.
解答:解:∵CA⊥DB,BF⊥DC,
∴∠BAC=∠DAC=∠DFB=90°,
∴∠D+∠ABE=90°,∠D+∠ACD=90°,
∴∠ABE=∠ACD.
在△ABE和△ACD中,
∠BAC=∠DAC
AB=AC
∠ABE=∠ACD

∴△ABE≌△ACD(ASA),
∴AE=AD,
∵DB=7,DA=2,
∴AB=AC=5,AE=2,
∴CE=5-2=3.
故选A.
点评:本题考查了余角的性质的运用,全等三角形的判定与性质的运用,解答时证明△ABE≌△ACD是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案