精英家教网 > 初中数学 > 题目详情
11、三角形的两边a、b的长分别为2cm,7cm,则第三边c的取值范围是
5cm<c<9cm
;若这个三角形的周长是偶数,则第三边c=
7
cm.
分析:根据第三边的取值范围是大于两边之差,而小于两边之和求解;
若周长是偶数,其它两边之和是9,则第三边应取奇数.
解答:解:根据三角形的三边关系,得
5cm<c<9cm;
若周长是偶数,其它两边之和是9,则第三边应取奇数,即c=7.
点评:此题考查了三角形的三边关系,注意第三边的条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法:
(1)函数y=
x-2
x-1
的自变量的取值范围是x≠1的实数;
(2)等腰三角形的顶角平分线垂直平分底边;
(3)在不等式两边同时乘以一个不为零的数,不等号的方向改变;
(4)多边形的内角和大于它的外角和;
(5)方程x2-2x-99=0可通过配方变形为(x-1)2=100;
(6)两条直线被第三条直线所截,同位角相等.
其中,正确说法的个数是(  )
A、2个B、3个C、4个D、5个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),一正方形纸板ABCD的边长为4,对角线AC、BD交于点O,一块等腰直角三角形的三角板的一个顶点处于点O处,两边分别与线段AB、AD交于点E、F,设BE=x.
(1)若三角板的直角顶点处于点O处,如图(2).判断三角形EOF的形状,并说明理由.
(2)在(1)的条件下,若三角形EOF的面积为S,求S关于x的函数关系式.
(3)若三角板的锐角顶点处于点O处,如图(3).
①若DF=y,求y关于x的函数关系式,并写出自变量的取值范围;
②探究直线EF与正方形ABCD的内切圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

用适当的符号表示下列关系.
(1)x与-3的和是负数;
(2)x与5的和的28%不大于-6;
(3)m除以4的商加上3至多为5;
(4)a与b两数和的平方不小于3;
(5)三角形的两边a,b的和大于第三边c.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个三角形的两边长分别是1cm和2cm,一个内角为40°.
(1)请你借助图画出一个满足题设条件的三角形;
(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在下图画这样的三角形;若不能,请说明理由.
(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°,”那么满足这一条件,且彼此不全等的三角形共有几个?分别画出草图,并在图中相应位置标明数据.(画图请保留作图痕迹,并把符合条件的图形用黑色笔画出来)

查看答案和解析>>

同步练习册答案