分析 (1)因为四边形ABCD是平行四边形,所以只要证明∠BAD=90°,即可得到四边形ABCD是矩形;
(2)连接AG,由平行四边形的性质和矩形的性质以及结合已知条件可证明△BCG∽△ABC,再由相似三角形的性质:对应边的比值相等即可证明AC2=BC•BG.
解答 解:
(1)证明:
∵BE⊥AC,
∴∠AFB=90°.
∴∠ABE+∠BAF=90°.
∵∠ABE=∠CAD.
∴∠CAD+∠BAF=90°.
即∠BAD=90°.
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形;
(2)连接AG.
∵AE=EG,
∴∠EAG=∠EGA.
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC.
∴∠ABG=∠BGC.
∴∠CAD=∠BGC.
∴∠AGC=∠GAC.
∴CA=CG.
∵AD∥BC,
∴∠CAD=∠ACB.
∴∠ACB=∠BGC.
∵四边形ABCD是矩形,
∴∠BCG=90°.
∴∠BCG=∠ABC,
∴△BCG∽△ABC.
∴$\frac{AC}{BG}=\frac{BC}{CG}$.
∴AC2=BC•BG.
点评 本题考查了平行四边形的性质、矩形的判断和性质、等腰三角形的判断和性质以及相似三角形的判断和性质,题目的综合性较强,难度中等,熟记相似三角形的各种判断方法是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 130° | B. | 180° | C. | 230° | D. | 260° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com