A. | 正方形 | B. | 矩形 | C. | 菱形 | D. | 等腰梯形 |
分析 作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半判定出四边形EFGH是平行四边形,再根据菱形的对角线互相垂直可得EF⊥FG,然后根据有一个角是直角的平行四边形是矩形判断.
解答 解:如图,∵E、F分别是AB、BC的中点,
∴EF∥AC且EF=$\frac{1}{2}$AC,
同理,GH∥AC且GH=$\frac{1}{2}$AC,
∴EF∥GH且EF=GH,
∴四边形EFGH是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
又根据三角形的中位线定理,EF∥AC,FG∥BD,
∴EF⊥FG,
∴平行四边形EFGH是矩形.
故选B.
点评 本题主要考查了三角形的中位线定理,菱形的性质,以及矩形的判定,连接四边形的中点得到的四边形的形状主要与原四边形的对角线的关系有关,原四边形的对角线相等,则得到的四边形是菱形,原四边形对角线互相垂直,则得到的四边形是矩形,连接任意四边形的四条边的中点得到的四边形都是平行四边形.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y=x2 | B. | y=$\frac{2}{x}$ | C. | y=$\frac{x}{2}$ | D. | y=$\frac{x+1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 8,15,17 | B. | 0.9,1.2,1.5 | C. | $\sqrt{2}$,$\sqrt{3}$,$\sqrt{5}$ | D. | $\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com