精英家教网 > 初中数学 > 题目详情

如图,已知Rt△AOB在平面直角坐标系中,∠AOB=90°,∠BAO=30°,且A的坐标为(3,0),⊙C的圆心坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交与点E.求:
(1)过点A、B、C的二次函数关系式;
(2)求△ABE面积的最大值.

解:(1)∵Rt△AOB在平面直角坐标系中,∠AOB=90°,∠BAO=30°,且A的坐标为(3,0),
∴B(0,),
设过A、B、C三点的函数关系式为y=a(x+1)(x-3),把点B(0,)代入得,
=a×1×(-3),解得a=-
∴过点A、B、C的二次函数关系式为:y=-(x+1)(x-3),即y=-x2+x+

(2)∵△ABE的高OA是定值,
∴BE越长,则△ABE的面积越大,
∴当⊙C与AD相切时,△ABE面积最大,连接CD,
则∠CDA=90°,
∵A(3,0),B(0,),⊙C的圆心为点C(-1,0),半径为1,
∴CD=1,AC=3+1=4,
∴AD===
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,
==,解得OE=
∴BE=OB+OE=+
∴S△ABE最大=BE•OA=×(+)×3=+
分析:(1)先根据∠AOB=90°,∠BAO=30°,且A的坐标为(3,0)求出B点坐标,用待定系数法求出过点A、B、C的二次函数关系式即可;
(2)由题意可得当⊙C与AD相切时,△ABE面积最大,然后连接CD,由切线的性质,根据勾股定理,可求得AD的长,易证得△AOE∽△ADC,根据相似三角形的对应边成比例,易求得OE的长,继而求得△ABE面积的最大值.
点评:本题考查的是二次函数综合题,涉及到切线的性质、相似三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC外切于⊙O,E、F、H为切点,∠ABC=90°,直线FE、CB相交于D点,连接AO、HE、HF,则下列结论:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正确结论的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•辽阳)如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处.
(1)求D点坐标;
(2)若抛物线y=ax2+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M.是否存在点P,使得以E、F、M、P为顶点的四边形为等腰梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-
b
2a
4ac-b2
4a
).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处.
(1)求D点坐标;
(2)若抛物线y=ax2+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M.是否存在点P,使得以E、F、M、P为顶点的四边形为等腰梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-数学公式数学公式).

查看答案和解析>>

科目:初中数学 来源:2011年辽宁省辽阳市中考数学试卷(解析版) 题型:解答题

如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处.
(1)求D点坐标;
(2)若抛物线y=ax2+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M.是否存在点P,使得以E、F、M、P为顶点的四边形为等腰梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-).

查看答案和解析>>

科目:初中数学 来源:2009年湖北省武汉市新洲区初中毕业年级数学试卷(解析版) 题型:选择题

(2009•新洲区模拟)如图,已知Rt△ABC外切于⊙O,E、F、H为切点,∠ABC=90°,直线FE、CB相交于D点,连接AO、HE、HF,则下列结论:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正确结论的个数为( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案