精英家教网 > 初中数学 > 题目详情
下列说法中错误的是   
A.三角形的中线、角平分线、高线都是线段
B.边数为n的多边形内角和是(n-2)×180°
C.有一个内角是直角的三角形是直角三角形
D.三角形的一个外角大于任何一个内角
D

试题分析:D错误:三角形的一个外角大于任何一个不相邻的内角。
点评:本题难度中等,主要考查学生对三角形性质知识点的概念掌握。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

直角△ABC中,∠A∠B=20°,则∠C的度数是()
A.90或55B.20或90C.35或90D.90或70

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,∠B=∠C="90" º,M是BC的中点,DM平分∠ADC.
 
(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;
(2)线段DM与AM有怎样的位置关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB的中垂线为CP交AB于点P,且AC =2CP.甲、乙两人想在AB上取D、E两点,使得AD=DC=CE=EB,其作法如下:甲作ÐACP、ÐBCP的角平分线,分别交AB于D、E两点,则D、E即为所求;乙作AC、BC的中垂线,分别交AB于D、E两点,则D、E即为所求.对于甲、乙两人的作法,下列正确的是(   ).

A. 两人都正确                B. 两人都错误
C.甲正确,乙错误            D. 甲错误,乙正确

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8
(1)EF=         ,   ∠DFB=       度
(2)请求出BD的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在△AOB与△COD中,OA=OB,OC=OD,
(1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD与OM之间的数量关系是                         ,位置关系是                    

(2)如图2,将图1中的△COD绕点逆时针旋转,旋转角为 ().连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;

(3)如图3,将图1中的 △COD绕点 O逆时针旋转到使 △COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.

请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情形.
情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;

情形二:如图3,沿 △ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;
将余下的部分沿∠B1A1C的平分线 A1B2折叠,此时点B1与点C重合.
 
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC  (填“是”或“不是”)△ABC的好角;
(2)若经过三次折叠发现∠BAC是△ABC的好角,请探究∠B与∠C之间的等量关系(不妨设∠B>∠C).
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C之问的等量关系为      .(不妨设∠B>∠C)
应用提升:
(3)小丽找到一个三角形,三个角分别为15º,60º,l05º,发现60º和l05º的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4º,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,M是BC边的中点,AP是∠BAC的平分线,BP⊥AP于点P. 若AB=12,AC=22,则MP的长为( )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案