精英家教网 > 初中数学 > 题目详情
若x1,x2是关于x的方程x2-(2k+1)x+k2+1=0的两个实数根,且x1,x2都大于1.
(1)求实数k的取值范围;
(2)若
x1
x2
=
1
2
,求k的值.
分析:(1)根据判别式的意义得到△=(2k+1)2-4(k2+1)≥0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=2k+1,x1•x2=k2+1,利用x2=2x1,则3x1=2k+1,2x12=k2+1,所以2×(
2k+1
3
2=k2+1,解此方程得到
k1=1,k2=7,然后根据x1,x2都大于1确定k的值.
解答:解:(1)根据题意得△=(2k+1)2-4(k2+1)≥0,
解得k≥
3
4

(2)根据题意得x1+x2=2k+1,x1•x2=k2+1,
x1
x2
=
1
2

∴x2=2x1
∴3x1=2k+1,2x12=k2+1,
∴2×(
2k+1
3
2=k2+1,
整理得k2-8k+7=0,解得k1=1,k2=7,
当k=1时,原方程为x2-3x+2=0,解得x1=1,x2=2(不符合条件舍去),
∴k的值为7.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的根与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、若x1、x2是关于x的方程x2+bx-3b=0的两个根,且x12+x22=7.那么b的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1和x2是关于x的方程x2-(a-1)x-b2+b-1=0的两个相等的实数根,则x1=x2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1,x2是关于x的方程x2-kx+5(k-5)=0的两个正实数根,且满足2x1+x2=7,则实数k的范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,再填空解答:
方程x2-3x-4=0的根为x1=-1,x2=4,x1+x2=3,x1x2=-4;
方程3x2+10x+8=0的根为x1=-2,x2=-
4
3
x1+x2=-
10
3
x1x2=
8
3

(1)方程2x2+x-3=0的根是x1=
-
3
2
-
3
2
,x2=
1
1
,x1+x2=
-
1
2
-
1
2
,x1x2=
-
3
2
-
3
2

(2)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

(3)当你轻松解决以上问题时,试一试下面这个问题:甲、乙两同学解方程x2+px+q=0时,甲看错了一次项系数,得根2和7,乙看错了常数项,得根1和-10,则原方程中的p、q到底是多少?你能写出原来的方程吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1和x2是关于x的方程x2-(a-1)x-
14
b2+b-1=0的两个相等的实数根,则x1=x2=
0
0

查看答案和解析>>

同步练习册答案