【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.
(1)求证:BC是⊙O的切线;
(2)求证:;
(3)若BE=8,sinB=,求AD的长,
【答案】(1)详见解析;(2)详见解析;(3)
【解析】
(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,证明△ABD∽△ADF,,由相似三角形的性质即可证得结论;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出AF的长,再根据(2)的结论即可求得AD的长.
(1)如图,连接OD,
∵AD为∠BAC的角平分线,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∴BC为圆O的切线;
(2)连接DF,由(1)知BC为圆O的切线,
∴∠FDC=∠DAF,
∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,
∴,
即AD2=ABAF;
(3)连接EF,在Rt△BOD中,sinB=,
设圆的半径为r,可得,
解得:r=5,
∴AE=10,AB=18,
∵AE是直径,
∴∠AFE=∠C=90°,
∴EF∥BC,
∴∠AEF=∠B,
∴sin∠AEF=,
∴AF=AEsin∠AEF=10×=,
∵AD2=ABAF
∴AD=.
科目:初中数学 来源: 题型:
【题目】某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.
(1)求这种笔和本子的单价;
(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DECD.正确结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CE是□ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E、连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有( )个.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.
(1)当n=5时,小明拼出来的图形总长度是 .(用含a、b的式子表示)
(2)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线和抛物线 (n为正整数).
(1)抛物线与x轴的交点坐标为 .顶点坐标为 .
(2)当n=1时,请解答下列问题:
①抛物线与x轴的交点坐标为 .顶点坐标为 .请写出抛物线y,的一条相同的性质.
②当直线与抛物线y,,共有4个交点时,求m的取值范围
(3)若直线y=k(k<0)与抛物线y,共有4个交点,从左至右依次标记为点A,B,C,D,当AB=BC=CD时,求出k,n之间满足的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】表中所列、的7对值是二次函数图象上的点所对应的坐标,其中
… | … | ||||||||
… | 6 | 11 | 11 | 6 | … |
根据表中提供约信息,有以下4个判断:①;②;③当时,的值是;④;其中判断正确的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点A,B的坐标分别为(3,5),(6,1).若过原点的直线l将这个图案分成面积相等的两部分,则直线l的函数解析式为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com