精英家教网 > 初中数学 > 题目详情
23、如图,△ABC中,∠BAC=90°,AB=AC,D在BC上,E在AC上,且∠ADE=45度.
(1)求证:△ABD∽△DCE.
(2)当D在什么位置时,△ABD≌△DCE.
分析:(1)要证△ABD∽△DCE,根据已知,可知∠B=∠C,只需要再证∠DEC=∠ADB,利用三角形的外角等于不相邻的两内角之和,可证.那么△ABD∽△DCE;
(2)由(1)中的相似,再加一个条件,即能全等,比如加上AB=CD即可.那么AB=AC=CD,再由△ABD≌△DCE,可得∠ADC=∠CAD,那么就有2∠EDC+45°=90°,即∠EDC=22.5度.
解答:解:(1)∵∠BAC=90°,AB=AC
∴∠B=∠C=45°,
又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),
同理∠ADB=∠C+∠CAD=45°+∠CAD,
∴∠DEC=∠ADB又∠ABD=∠DCE=45°,
∴△ABD∽△DCE.

(2)在Rt△ABC内,作∠BAD=22.5°,
(即∠A的四等份线)交BC于D,则点D即为所求.
∵△ABD∽△DCE当AB=CD时,△ABD≌△DCE,
∵AB=AC,
∴CD=AC从而∠ADC=∠CAD.
又∵∠C=∠B=45°,∠ADE=45°,
∴∠EDC=22.5°,
∴∠EDC=22.5°.
点评:本题利用了三角形的外角等于不相邻的两个内角之和,相似三角形、全等三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案