【题目】如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.
(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;
(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.
【答案】
(1)解:四位“和谐数”:1221,1331,1111,6666…(答案不唯一)
任意一个四位“和谐数”都能被11整除,理由如下:
设任意四位“和谐数”形式为: ,则满足:
最高位到个位排列:a,b,c,d.
个位到最高位排列:d,c,b,a.
由题意,可得两组数据相同,则:a=d,b=c,
则 = = =91a+10b为正整数.
∴四位“和谐数”能被11整数,
又∵a,b,c,d为任意自然数,
∴任意四位“和谐数”都可以被11整除
(2)解:设能被11整除的三位“和谐数”为: ,则满足:
个位到最高位排列:x,y,z.
最高位到个位排列:z,y,x.
由题意,两组数据相同,则:x=z,
故 = =101x+10y,
故 = = =9x+y+ 为正整数.
故y=2x(1≤x≤4,x为自然数)
【解析】(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为: ,根据和谐数的定义得到a=d,b=c,则 = = =91a+10b为正整数,易证得任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为: ,则 = = =9x+y+ 为正整数.故y=2x(1≤x≤4,x为自然数).
科目:初中数学 来源: 题型:
【题目】某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)补全频数直方图;
(2)求扇形统计图中m的值和E组对应的圆心角度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A,B两组捐款户数的比为1∶5.
捐款户数分组统计表
组别 | 捐款数(x)元 | 户数 |
A | 1≤x<100 | a |
B | 100≤x<200 | 10 |
C | 200≤x<300 | 20 |
D | 300≤x<400 | 14 |
E | x≥400 | 4 |
请结合以上信息解答下列问题:
(1)a=____________,本次调查的样本容量是____________;
(2)补全捐款户数统计表和统计图;
(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条直线上依次有A、B、C三个港口,A、B两港相距30千米,B、C两港相距90千米.甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.甲0.5小时到达B港,此时两船相距15千米.
求:(1)甲船何时追上乙,此时乙离C港多远?
(2)何时甲乙两船相距10千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点P是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C,D.
(1)∠PCD=∠PDC吗?为什么?
(2)OP是CD的垂直平分线吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com