【题目】如图,在平面直角坐标系中,四边形 OABC 为菱形,点 C 的坐标为(4,0),∠AOC = 60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与 菱形 OABC 的两边分别交与点 M、N(点 M 在点 N 的上方).
(1)求 A、B 两点的坐标;
(2)设 OMN 的面积为 S,直线 l 运动时间为 t 秒(0 ≤t ≤6 ),试求 S 与 t 的函数表达 式;
(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少.
【答案】(1)A(2,),B(6,);(2)当时,;当,;当时,;(3)秒时,.
【解析】
(1)根菱形性质得出OA=AB=BC=CO=4,过A作AD⊥OC于D,求出AD、OD,即可得出答案;
(2)依题意可分为三种情况:①当0≤t≤2时,直线l与OA、OC两边相交,②当2<t≤4时,直线l与AB、OC两边相交,③当4<t≤6时,直线l与AB、BC两边相交,画出图形求出即可;
(3)根据(2)中各函数的性质和各自的自变量的取值范围可得出S的最大值及对应的t的值.
解:(1)∵四边形OABC为菱形,点C的坐标为(4,0),
∴
过点A作于D.
∵
∴,
∴A(2,),B(6,).
(2)∵,
∴,
直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:
①当时,直线l与直线OA,OC两边相交,
∴,
则;
②当时,直线l与AB、OC两边相交,
则;
③当时,直线l与AB、BC两边相交,
设直线l与x轴相交于H点,
∵,
∴;
综上所述:,
(3)由(2)知,当时,;
当时,;
∵的对称轴为,
∴函数,当时,S随的增大而减小,
即时,S取得最大值:,
综上所述,当秒时,.
科目:初中数学 来源: 题型:
【题目】(1)如图 1,若 P是口ABCD 边 CD 上任意一点,连结 AP、BP,若△APB 的面积为 60 ,△APD 的面积为 18,则 S△APC= .
(2) 如图 2,①若点 P 运动到口ABCD 内一点时,试说明 S△APB +S△DPC =S△BPC +S△APD.
②若此时△APB 的面积为 60,△APD 的面积为 18,则 S△APC= .
(3)如图 3①利用(2)中的方法你会发现,S△APB ,S△DPC ,S△BPC ,S△APD 之间存在怎样的关系: .
②若此时△APB 的面积为 60,△APD 的面积为 18,请利用你的发现,求 S△APC 的面积?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A′B′C′,其中点B的运动路径为,则图中阴影部分的面积为( )
A.π﹣B.2C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转得到线段,若要使点恰好在上,则的长为().
A. 4B. 5C. 6D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E.
(1)试说明:△ABF∽△COE.
(2)如图(2),当O为AC边的中点,且时,求的值.
(3)当O为AC边的中点,时,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,E为AC上一点,连接BE,将△BEC旋转,使点C落在BC上的点D处,点B落在BC上方的点F处,点E落在点C处,连接AF.求证:四边形ABDF为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,三个顶点的坐标分别为A(2,3)、B(1,1)、C(5,1).
(1)把平移后,其中点移到点,面出平移后得到的;
(2)把绕点按逆时针方向旋转,画出旋转后得到的,并求出旋转过程中点经过的路径长(结果保留根号和).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,边BC在x轴上,点E是对角线AC,BD的交点,反比例函数y=的图象经过A,E两点,则k的值为( )
A. 8B. 4C. 6D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com