精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=( )

A.8cm
B.4cm
C.6cm
D.10cm
【答案】分析:根据垂直平分线性质可知BD=AD,所以BD+CD=AC;根据cos∠BDC=可求出BD和CD,从而根据勾股定理求出BC.
解答:解:∵MN为AB的中垂线,
∴BD=AD.
设AD=acm,
∴BD=acm,CD=(16-a)cm,
∴cos∠BDC==
∴a=10.
∴在Rt△BCD中,CD=6cm,BD=10cm,
∴BC=8cm.
故选A.
点评:此题考查了线段垂直平分线的性质和勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案