精英家教网 > 初中数学 > 题目详情
如图,直线y1=2x与双曲线y2=
8
x
相交于点A、E.另一直线y3=x+b与双曲线交于点A、B,与x、y轴分别交于点C、D.直线EB交x轴于点F.
(1)求A、B两点的坐标,并比较线段OA、OB的长短;
(2)由函数图象直接写出函数y2>y3>y1的自变量x的取值范围;
(3)求证:△COD△CBF.
(1)由题意得:
y=2x
y=
8
x

解得
x=2
y=4
,或
x=-2
y=-4

∴A(-2,-4),E(2,4),
将A坐标代入y3=x+b中,得b=-2,即y3=x-2,
联立得:
y=
8
x
y=x-2

解得:
x=4
y=2

∴B(4,2);
OA=
22+42
,OB=
22+42

∴AO=BO,

(2)∵A点坐标为(-2,-4),
∴结合图象当x<-2时,y2>y3>y1

(3)设直线EB的解析式为y=k1x+b1,直线AB的解析式为y=k2x+b2
则有
4k1+b1=2
2k1+b1=4
-2k2+b2=-4
4k2+b2=2

解得:
k1=-1
b1=6
b2=-2
k2=1

∵k1•k2=-1,
∴AB⊥EF,∴∠CBF=∠DOC=90°
∵∠OCD=∠BCF,
∴△DOC△CBF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=k1x+b的图象与反比例函数y=
k2
x
的图象交于A(1,-3),B(3,m)两点,连接OA、OB.
(1)求两个函数的解析式;
(2)求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设△ABC中BC边的长为x厘米,BC边上的高AD为y厘米,△ABC的面积是常数,已知y关于x的函数图象过点(3,4).
(1)y关于x的函数解析式和△ABC的面积;
(2)利用函数图象,求2<x<8时y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系中,且OB=3
3

(1)若双曲线的一个分支恰好经过点A,求双曲线的解析式;
(2)若把含30°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A′,试求图中阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=
3
x-2的图象经过(a,b),(a+1,b+k)两点,并且与反比例函数y=
k
x
的图象交于第一象限内一点A.
(1)求反比例函数的解析式;
(2)求点A的坐标;
(3)若射线OA与x轴的夹角为30°请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(a,b)为双曲线y=
6
x
(x>0)图象上一点.
(1)如图1所示,过点A作AD⊥y轴于D点,点P是x轴任意一点,连接AP.求△APD的面积.
(2)以A(a,b)为直角顶点作等腰Rt△ABC,如图2所示,其中点B在点C的左侧,若B点的坐标为B(-1,0),且a、b都为整数时,试求线段BC的长.
(3)在(2)中,当等腰Rt△ABC的直角顶点A(a,b)在双曲线上移动时,B、C两点也随着移动,试用含a,b的式子表示C点坐标;并证明在移动过程中OC2-OB2的值恒为定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:O是坐标原点,P(m,n)(m>0)是函数y=
k
x
(k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+
n4
4

(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠
n4
2
,求OP2的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
8
x
的图象过矩形OABC的顶点B,OA、0C分别在x轴、y轴的正半轴上,OA:0C=2:1.
(1)设矩形OABC的对角线交于点E,求出E点的坐标;
(2)若直线y=2x+m平分矩形OABC面积,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A与点B(-3,2)关于y轴对称,反比例函数y=
k
x
与一次函数y=mx+b的图象都经过点A,且点C(2,0)在一次函数y=mx+b的图象上.
(1)求反比例函数和一次函数的解析式;
(2)若两个函数图象的另一个交点为D,求△AOD的面积.

查看答案和解析>>

同步练习册答案