精英家教网 > 初中数学 > 题目详情

判断:

边长为1的等边三角形的高不是有理数.  (  )

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是边长为1的等边三角形,P是AB边上的一个动点(P与B不重合),以线段CP为边作等边△CPD(D、A在BC的同侧),连接AD.
(1)判断四边形ABCD的形状,并给予证明;
(2)设BP=x,△PAD的面积为y,求出y关于x的函数关系式,并求出△PAD面积的最大值及取得最大值时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下精英家教网列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长为2的等边△ABC中,AD⊥BC,点P为边AB上一个动点,过P点作PF∥AC交线段BD于点F,作GP⊥AB交线段AD于点E,交线段CD于点G,设BP=x.
(1)①试判断BG与2BP的大小关系,并说明理由;
②用x的代数式表示线段DG的长,并写出x的取值范围;
(2)记△DEF的面积为S,求S与x之间的函数关系式,并求出S值为
3
48
时x的值;
(3)以P、E、F为顶点的三角形与△EDG是否可能相似?如果能相似,请求出BP的长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

由于水资源缺乏,B、C两地不得不从黄河上的扬水站A处引水,这就需要在A、B、C之间铺设地下管道,有人设计了3种方案:如图1中实线表示管道铺设路线,在图2中,AD⊥BC于D,在图3中,OA=OB=OC,且交点到顶点A的距离为三角形高的
23
,为减少渗漏、节约水资源,并降低工程造价,铺设路线尽量缩短.已知ABC是一个边长为a的等边三角形,请你通过计算,判断哪种铺高方案好?

查看答案和解析>>

同步练习册答案