精英家教网 > 初中数学 > 题目详情

先阅读后解题.
已知m2+2m+n2-6n+10=0,求m和n的值
解:把等式的左边分解因式:(m2+2m+1)+(n2-6n+9)=0
即(m+1)2+(n-3)2=0
因为(m+1)2≥0,(n-3)2≥0
所以m+1=0,n-3=0即m=-1,n=3.
利用以上解法,解下列问题:已知:x2-4x+y2+y+数学公式=0,求x和y的值.

解:把等式左边变形:(x2-4x+4)+(y2+y+)=0,
即(x-2)2+(y+2=0,
∵(x-2)2≥0,(y+2≥0,
∴x-2=0,y+=0,
∴x=2,y=
分析:先把等式左边变形得到两个完全平方式,即(x-2)2+(y+2=0,再根据几个非负数的和的性质得到x-2=0,y+=0,然后解两个一次方程即可.
点评:本题考查了因式分解的应用:把所求的代数式运用因式分解进行变形,然后利用整体思想进行计算.也考查了非负数的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先阅读后解题.
已知m2+2m+n2-6n+10=0,求m和n的值
解:把等式的左边分解因式:(m2+2m+1)+(n2-6n+9)=0
即(m+1)2+(n-3)2=0
因为(m+1)2≥0,(n-3)2≥0
所以m+1=0,n-3=0即m=-1,n=3.
利用以上解法,解下列问题:已知:x2-4x+y2+y+4
14
=0,求x和y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

先阅读后解题
若m2+2m+n2-6n+10=0,求m和n的值.
解:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0
∵(m+1)2≥0,(n-3)2≥0
∴(m+1)2=0,(n-3)2=0
∴m+1=0,n-3=0
∴m=-1,n=3
利用以上解法,解下列问题:
已知 x2+5y2-4xy+2y+1=0,求x和y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

先阅读后解题
若m2+2m+n2-6n+10=0,求m和n的值.
解:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0
∵(m+1)2≥0,(n-3)2≥0
∴(m+1)2=0,(n-3)2=0
∴m+1=0,n-3=0
∴m=-1,n=3
利用以上解法,解下列问题:
已知 x2+5y2-4xy+2y+1=0,求x和y的值.

查看答案和解析>>

科目:初中数学 来源:期中题 题型:解答题

先阅读后解题
若m2+2m+n2-6n+10=0,求m和n的值
解:把等式的左边分解因式:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0,
因为(m+1)2≥0,(n-3)2≥0
所以m+1=0,n-3=0,
即m=-1,n=3
利用以上解法,解下列问题:
已知x2+y2-x+6y+=0,求x和y的值。

查看答案和解析>>

同步练习册答案