【题目】已知关于x的分式方程
(1)若方程的增根为x=1,求m的值
(2)若方程有增根,求m的值
(3)若方程无解,求m的值.
【答案】(1)m=-6;(2) 当x=﹣2时,m=1.5;当x=1时,m=﹣6;(3)m的值为﹣1或﹣6或1.5
【解析】试题分析:方程两边同时乘以最简公分母(x-1)(x+2),化为整式方程;
(1)把方程的增根x=1代入整式方程,解方程即可得;
(2)若方程有增根,则最简公分母为0,从而求得x的值,然后代入整式方程即可得;
(3)方程无解,有两种情况,一种是原方程有增根,一种是所得整式方程无解,分别求解即可得.
试题解析:方程两边同时乘以(x+2)(x﹣1),得
2(x+2)+mx=x-1,
整理得(m+1)x=﹣5,
(1)∵x=1是分式方程的增根,
∴1+m=﹣5,
解得:m=﹣6;
(2)∵原分式方程有增根,
∴(x+2)(x﹣1)=0,
解得:x=﹣2或x=1,
当x=﹣2时,m=1.5;当x=1时,m=﹣6;
(3)当m+1=0时,该方程无解,此时m=﹣1;
当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=1.5,
综上,m的值为﹣1或﹣6或1.5.
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,点D是直线MN上一点,不与点A重合.
(1)若点E是图1中线段AB上一点,且DE=DA,请判断线段DE与DA的位置关系,并说明理由;
(2)请在下面的A,B两题中任选一题解答.
A:如图2,在(1)的条件下,连接BD,过点D作DP⊥DB交线段AC于点P,请判断线段DB与DP的数量关系,并说明理由;
B:如图3,在图1的基础上,改变点D的位置后,连接BD,过点D作DP⊥DB交线段CA的延长线于点P,请判断线段DB与DP的数量关系,并说明理由.
我选择: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC .
(1)如图1,判断△BCE的形状,并说明理由;
(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF
(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;
(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.
(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).
(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为;
(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1 , 利用列表法或树状图加以说明;
(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线y=2x﹣2与曲线y= (x>0)相交于点A(2,n),与x轴、y轴分别交于点B,C.
(1)求曲线的解析式;
(2)试求ABAC的值?
(3)如图2,点E是y轴正半轴上一动点,过点E作直线AC的平行线,分别交x轴于点F,交曲线于点D.是否存在一个常数k,始终满足:DEDF=k?如果存在,请求出这个常数k;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF;EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,E是CD上的一点,△ABF是△ADE的旋转图形.
(1)写成由△ADE顺时针旋转到△ABF的旋转中心、旋转角的度数.
(2)连接EF,判断并说明△AEF的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com