分析 (1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;
(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.
解答 (1)证明:在△ABC和△ADE中,$\left\{\begin{array}{l}{AB=AD}\\{BC=DE}\\{AC=AE}\end{array}\right.$,
∴△ABC≌△ADE(SSS),
∴∠BAC=∠DAE,
∴∠DAE-∠CAD=∠BAC-∠CAD,
即:∠EAC=∠BAD;
(2)解:∵△ABC≌△ADE,
∴∠B=∠ADE,
由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,
∴∠EDC=∠BAD,
∵∠BAD=42°,
∴∠EDC=42°.
点评 本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com